Bull SAS
NovaScale R480 F2 (Intel Xeon E7530, 1.87 GHz)

CPU2006 license: 20
Test sponsor: Bull SAS
Tested by: Dell Inc.

Test date: Apr-2011
Hardware Availability: Jul-2011

Software Availability: Jan-2011

Hardware

<table>
<thead>
<tr>
<th>Test</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>48</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>48</td>
</tr>
<tr>
<td>403.gcc</td>
<td>48</td>
</tr>
<tr>
<td>429.mcf</td>
<td>24</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>48</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>24</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>48</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>48</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>48</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>48</td>
</tr>
<tr>
<td>473.astar</td>
<td>48</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>48</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Operating System</th>
<th>SUSE Linux Enterprise Server 11 SP1 (x86_64), Kernel 2.6.32.12-0.7-default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler</td>
<td>Intel C++ Compiler XE for applications running on IA-32 Version 12.0.1.116 Build 20101116</td>
</tr>
<tr>
<td>Auto Parallel</td>
<td>No</td>
</tr>
<tr>
<td>File System</td>
<td>ext3</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>32-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>32/64-bit</td>
</tr>
<tr>
<td>Other Software</td>
<td>Microquill SmartHeap V9.01</td>
</tr>
</tbody>
</table>

SPEClnt_rate2006 = 513
SPEClnt_rate_base2006 = 485
Bull SAS
NovaScale R480 F2 (Intel Xeon E7530, 1.87 GHz)

SPEC CINT2006 Result

SPECint_rate2006 = 513

SPECint_rate_base2006 = 485

CPU2006 license: 20
Test date: Apr-2011
Test sponsor: Bull SAS
Hardware Availability: Jul-2011
Tested by: Dell Inc.
Software Availability: Jan-2011

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base</td>
<td></td>
<td>Peak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.perlbench</td>
<td>48</td>
<td>1209</td>
<td>388</td>
<td>1208</td>
<td>388</td>
<td>1210</td>
<td>388</td>
<td>48</td>
<td>967</td>
<td>485</td>
<td>970</td>
<td>484</td>
<td>972</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>48</td>
<td>1721</td>
<td>269</td>
<td>1722</td>
<td>269</td>
<td>1723</td>
<td>269</td>
<td>48</td>
<td>1568</td>
<td>295</td>
<td>1574</td>
<td>294</td>
<td>1569</td>
</tr>
<tr>
<td>403.gcc</td>
<td>48</td>
<td>950</td>
<td>407</td>
<td>950</td>
<td>407</td>
<td>954</td>
<td>405</td>
<td>48</td>
<td>950</td>
<td>407</td>
<td>950</td>
<td>407</td>
<td>954</td>
</tr>
<tr>
<td>429.mcf</td>
<td>48</td>
<td>852</td>
<td>514</td>
<td>850</td>
<td>515</td>
<td>845</td>
<td>518</td>
<td>24</td>
<td>411</td>
<td>533</td>
<td>413</td>
<td>531</td>
<td>410</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>48</td>
<td>1121</td>
<td>449</td>
<td>1119</td>
<td>450</td>
<td>1121</td>
<td>449</td>
<td>48</td>
<td>1062</td>
<td>474</td>
<td>1064</td>
<td>473</td>
<td>1065</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>48</td>
<td>717</td>
<td>625</td>
<td>708</td>
<td>632</td>
<td>711</td>
<td>630</td>
<td>24</td>
<td>326</td>
<td>686</td>
<td>326</td>
<td>688</td>
<td>327</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>48</td>
<td>1363</td>
<td>426</td>
<td>1364</td>
<td>426</td>
<td>1363</td>
<td>426</td>
<td>48</td>
<td>1242</td>
<td>468</td>
<td>1242</td>
<td>468</td>
<td>1243</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>48</td>
<td>417</td>
<td>2390</td>
<td>418</td>
<td>2380</td>
<td>420</td>
<td>2370</td>
<td>48</td>
<td>417</td>
<td>2390</td>
<td>418</td>
<td>2380</td>
<td>420</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>48</td>
<td>1764</td>
<td>602</td>
<td>1769</td>
<td>600</td>
<td>1777</td>
<td>598</td>
<td>48</td>
<td>1750</td>
<td>607</td>
<td>1757</td>
<td>604</td>
<td>1748</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>48</td>
<td>995</td>
<td>302</td>
<td>990</td>
<td>303</td>
<td>989</td>
<td>303</td>
<td>48</td>
<td>903</td>
<td>332</td>
<td>904</td>
<td>332</td>
<td>904</td>
</tr>
<tr>
<td>473.astar</td>
<td>48</td>
<td>1092</td>
<td>308</td>
<td>1092</td>
<td>309</td>
<td>1091</td>
<td>309</td>
<td>48</td>
<td>1092</td>
<td>308</td>
<td>1092</td>
<td>309</td>
<td>1091</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>48</td>
<td>692</td>
<td>479</td>
<td>695</td>
<td>477</td>
<td>693</td>
<td>478</td>
<td>48</td>
<td>692</td>
<td>479</td>
<td>695</td>
<td>477</td>
<td>693</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The config file option 'submit' was used.
numactl was used to bind copies to the cores.

Operating System Notes

'ulimit -s unlimited' was used to set the stacksize to unlimited prior to run
'mount -t hugetlbfs nodev /mnt/hugepages' was used to enable large pages
echo 43200 > /proc/sys/vm/nr_hugepages
export HUGETLB_MORECORE=yes
export LD_PRELOAD=/usr/lib64/libhugetlbfs.so

Platform Notes

BIOS Settings:
Power Management = Maximum Performance (Default = Active Power Controller)

General Notes

The Dell PowerEdge R910 and
the Bull NovaScale R480 F2 models are electronically equivalent.
The results have been measured on a Dell PowerEdge R910 model.
Binaries were compiled on RHEL5.5
SPEC CINT2006 Result

Bull SAS
NovaScale R480 F2 (Intel Xeon E7530, 1.87 GHz)

SPECint_rate2006 = 513
SPECint_rate_base2006 = 485

CPU2006 license: 20
Test date: Apr-2011
Test sponsor: Bull SAS
Hardware Availability: Jul-2011
Tested by: Dell Inc.
Software Availability: Jan-2011

Base Compiler Invocation

- C benchmarks:
 - `icc -m32`
- C++ benchmarks:
 - `icpc -m32`

Base Portability Flags

- 400.perlbench: `-DSPEC_CPU_LINUX_IA32`
- 462.libquantum: `-DSPEC_CPU_LINUX`
- 483.xalancbmk: `-DSPEC_CPU_LINUX`

Base Optimization Flags

- C benchmarks:
 - `-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch`
 - `-B /usr/share/libhugetlbfs/ -Wl,-hugetlbfs-link=BDT`
- C++ benchmarks:
 - `-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -Wl,-z,muldefs`
 - `-L/smartheap -lsmartheap`
 - `-B /usr/share/libhugetlbfs/ -Wl,-hugetlbfs-link=BDT`

Base Other Flags

- C benchmarks:
 - `403.gcc: -Dalloca=_alloca`

Peak Compiler Invocation

C benchmarks (except as noted below):
- `icc -m32`
- `400.perlbench: icc -m64`
- `401.bzip2: icc -m64`
- `456.hmmer: icc -m64`
- `458.sjeng: icc -m64`

Continued on next page
Peak Compiler Invocation (Continued)

C++ benchmarks:
\texttt{icpc -m32}

Peak Portability Flags

400.perlbench: -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64
401.bzip2: -DSPEC_CPU_LP64
456.hmmer: -DSPEC_CPU_LP64
458.sjeng: -DSPEC_CPU_LP64
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Peak Optimization Flags

C benchmarks:

400.perlbench: -xSSE4.2 (pass 2) -prof-gen (pass 1) -ipo (pass 2)
-03 (pass 2) -no-prec-div (pass 2) -prof-use (pass 2)
-B /usr/share/libhugetlbfs/ -Wl,-melf_x86_64 -Wl,-hugetlbfs_link=BDT

401.bzip2: -xSSE4.2 (pass 2) -prof-gen (pass 1) -ipo (pass 2)
-03 (pass 2) -no-prec-div (pass 2) -prof-use (pass 2)
-opt-prefetch -auto-ilp32 -ansi-alias
-B /usr/share/libhugetlbfs/ -Wl,-melf_x86_64 -Wl,-hugetlbfs_link=BDT

403.gcc: basepeak = yes

429.mcf: -xSSE4.2 (pass 2) -prof-gen (pass 1) -ipo (pass 2)
-03 (pass 2) -no-prec-div (pass 2) -prof-use (pass 2)
-ansi-alias -auto-ilp32

445.gobmk: -xSSE4.2 (pass 2) -prof-gen (pass 1) -prof-use (pass 2)
-ansi-alias -auto-ilp32

456.hmmer: -xSSE4.2 -ipo -03 -no-prec-div -unroll2 -auto-ilp32
-B /usr/share/libhugetlbfs/ -Wl,-melf_x86_64 -Wl,-hugetlbfs_link=BDT

458.sjeng: -xSSE4.2 (pass 2) -prof-gen (pass 1) -ipo (pass 2)
-03 (pass 2) -no-prec-div (pass 2) -prof-use (pass 2)
-unroll14 -auto-ilp32
-B /usr/share/libhugetlbfs/ -Wl,-melf_x86_64 -Wl,-hugetlbfs_link=BDT

462.libquantum: basepeak = yes

464.h264ref: -xSSE4.2 (pass 2) -prof-gen (pass 1) -ipo (pass 2)
-03 (pass 2) -no-prec-div (pass 2) -prof-use (pass 2)
-unroll12 -ansi-alias

Continued on next page
Peak Optimization Flags (Continued)

C++ benchmarks:

471.omnetpp: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
-03(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
-ansi-alias -opt-ra-region-strategy=block -Wl,-z,muldefs
-L/smartheap -lsmartheap

473.astar: basepeak = yes
483.xalancbmk: basepeak = yes

Peak Other Flags

C benchmarks:

403.gcc: -Dalloca=_alloca

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Intel-ic12.0-linux64-revB.html
http://www.spec.org/cpu2006/flags/Intel-Linux64-Platform.20110524.00.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Intel-ic12.0-linux64-revB.xml
http://www.spec.org/cpu2006/flags/Intel-Linux64-Platform.20110524.00.xml

SPEC and SPECint are registered trademarks of the Standard Performance
Evaluation Corporation. All other brand and product names appearing in
this result are trademarks or registered trademarks of their respective
holders.

For questions about this result, please contact the tester.
For other inquiries, please contact webmaster@spec.org.

Tested with SPEC CPU2006 v1.1.
Originally published on 24 May 2011.