SPECint® CINT2006 Result

Huawei

Huawei RH2288 v2

SPECint® rate2006 = 671

SPECint_rate_base2006 = 648

<table>
<thead>
<tr>
<th>CPU2006 license:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>CPU Name:</td>
<td>Intel Xeon E5-2650 v2</td>
</tr>
<tr>
<td>CPU Characteristics:</td>
<td>Intel Turbo Boost Technology up to 3.40 GHz</td>
</tr>
<tr>
<td>CPU MHz:</td>
<td>2600</td>
</tr>
<tr>
<td>FPU:</td>
<td>Integrated</td>
</tr>
<tr>
<td>CPU(s) enabled:</td>
<td>16 cores, 2 chips, 8 cores/chip, 2 threads/core</td>
</tr>
<tr>
<td>CPU(s) orderable:</td>
<td>1,2 chip</td>
</tr>
<tr>
<td>Primary Cache:</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>Secondary Cache:</td>
<td>256 KB I+D on chip per core</td>
</tr>
<tr>
<td>L3 Cache:</td>
<td>20 MB I+D on chip per chip</td>
</tr>
<tr>
<td>Other Cache:</td>
<td>None</td>
</tr>
<tr>
<td>Memory:</td>
<td>128 GB (8 x 16 GB 2Rx4 PC3-14900R-13, ECC)</td>
</tr>
<tr>
<td>Disk Subsystem:</td>
<td>1 x 500 GB SATA, 7200RPM</td>
</tr>
<tr>
<td>Other Hardware:</td>
<td>None</td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Operating System:</td>
<td>Red Hat Enterprise Linux Server release 6.5 (Santiago)</td>
</tr>
<tr>
<td>Compiler:</td>
<td>C/C++: Version 14.0.0.080 of Intel C++ Studio XE for Linux</td>
</tr>
<tr>
<td>Auto Parallel:</td>
<td>No</td>
</tr>
<tr>
<td>File System:</td>
<td>ext4</td>
</tr>
<tr>
<td>System State:</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers:</td>
<td>32-bit</td>
</tr>
<tr>
<td>Peak Pointers:</td>
<td>32/64-bit</td>
</tr>
<tr>
<td>Other Software:</td>
<td>Microquill SmartHeap V10.0</td>
</tr>
</tbody>
</table>
Huawei
Huawei RH2288 v2

SPECint_rate2006 = 671
SPECint_rate_base2006 = 648

CPU2006 license: 3175
Test date: Apr-2014
Hardware Availability: Sep-2013
Test sponsor: Huawei
Software Availability: Nov-2013
Tested by: Huawei

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>32</td>
<td>642</td>
<td>487</td>
<td>643</td>
<td>486</td>
<td>643</td>
<td>486</td>
<td>32</td>
<td>535</td>
<td>585</td>
<td>532</td>
<td>588</td>
<td>532</td>
<td>588</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>32</td>
<td>890</td>
<td>347</td>
<td>895</td>
<td>345</td>
<td>891</td>
<td>347</td>
<td>32</td>
<td>875</td>
<td>353</td>
<td>872</td>
<td>354</td>
<td>872</td>
<td>354</td>
</tr>
<tr>
<td>403.gcc</td>
<td>32</td>
<td>501</td>
<td>514</td>
<td>504</td>
<td>511</td>
<td>506</td>
<td>509</td>
<td>32</td>
<td>501</td>
<td>514</td>
<td>504</td>
<td>511</td>
<td>506</td>
<td>509</td>
</tr>
<tr>
<td>429.mcf</td>
<td>32</td>
<td>302</td>
<td>965</td>
<td>303</td>
<td>963</td>
<td>302</td>
<td>966</td>
<td>32</td>
<td>302</td>
<td>965</td>
<td>303</td>
<td>963</td>
<td>302</td>
<td>966</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>32</td>
<td>699</td>
<td>480</td>
<td>697</td>
<td>481</td>
<td>697</td>
<td>481</td>
<td>32</td>
<td>681</td>
<td>493</td>
<td>680</td>
<td>494</td>
<td>682</td>
<td>492</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>32</td>
<td>334</td>
<td>894</td>
<td>333</td>
<td>898</td>
<td>335</td>
<td>892</td>
<td>32</td>
<td>305</td>
<td>980</td>
<td>305</td>
<td>978</td>
<td>306</td>
<td>977</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>32</td>
<td>806</td>
<td>481</td>
<td>811</td>
<td>477</td>
<td>808</td>
<td>479</td>
<td>32</td>
<td>778</td>
<td>497</td>
<td>783</td>
<td>495</td>
<td>779</td>
<td>497</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>32</td>
<td>153</td>
<td>4330</td>
<td>153</td>
<td>4330</td>
<td>153</td>
<td>4330</td>
<td>32</td>
<td>153</td>
<td>4330</td>
<td>153</td>
<td>4330</td>
<td>153</td>
<td>4330</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>32</td>
<td>875</td>
<td>809</td>
<td>874</td>
<td>810</td>
<td>873</td>
<td>812</td>
<td>32</td>
<td>867</td>
<td>817</td>
<td>862</td>
<td>821</td>
<td>863</td>
<td>820</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>32</td>
<td>589</td>
<td>339</td>
<td>584</td>
<td>343</td>
<td>586</td>
<td>341</td>
<td>32</td>
<td>553</td>
<td>362</td>
<td>557</td>
<td>359</td>
<td>556</td>
<td>360</td>
</tr>
<tr>
<td>473.astar</td>
<td>32</td>
<td>605</td>
<td>372</td>
<td>606</td>
<td>371</td>
<td>606</td>
<td>371</td>
<td>32</td>
<td>605</td>
<td>372</td>
<td>606</td>
<td>371</td>
<td>606</td>
<td>371</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>32</td>
<td>308</td>
<td>716</td>
<td>308</td>
<td>716</td>
<td>308</td>
<td>716</td>
<td>32</td>
<td>308</td>
<td>716</td>
<td>308</td>
<td>716</td>
<td>308</td>
<td>716</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

Platform Notes

Sysinfo program /spec/config/sysinfo.rev6818
$Rev: 6818 $ $Date:: 2012-07-17 #$ e86d102572650a6e4d596a3cee98f191
running on huawei Wed Apr 2 12:31:01 2014

This section contains SUT (System Under Test) info as seen by some common utilities. To remove or add to this section, see:
http://www.spec.org/cpu2006/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
 2 "physical id"s (chips)
 32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 8
siblings : 16
Huawei
Huawei RH2288 v2

SPECint_rate2006 = 671
SPECint_rate_base2006 = 648

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

<table>
<thead>
<tr>
<th>Platform Notes (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical 0: cores 0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>physical 1: cores 0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>cache size : 20480 KB</td>
</tr>
</tbody>
</table>

From /proc/meminfo
MemTotal: 132103760 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/usr/bin/lsb_release -d
Red Hat Enterprise Linux Server release 6.5 (Santiago)

From /etc/*release*/etc/*version*
redhat-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)
system-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)

uname -a:
Linux huawei 2.6.32-431.el6.x86_64 #1 SMP Sun Nov 10 22:19:54 EST 2013 x86_64
x86_64 x86_64 GNU/Linux
run-level 3 Apr 2 12:25

SPEC is set to: /spec
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda1 ext4 193G 56G 128G 31% /

Additional information from dmidecode:
BIOS Insyde Corp. RMIBV372 12/21/2013
Memory:
16x NO DIMM NO DIMM
2x Samsung M393B2G70DB0-CMA 16 GB 1866 MHz 2 rank
6x Samsung M393B2G70QH0-CMA 16 GB 1866 MHz 2 rank

(End of data from sysinfo program)

General Notes
Environment variables set by runspec before the start of the run:
LD_LIBRARY_PATH = "/spec/libs/32:/spec/libs/64:/spec/sh"

Binaries compiled on a system with 1x Core i7-860 CPU + 8GB
memory using RedHat EL 6.4
Transparent Huge Pages enabled with:
echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled
Filesystem page cache cleared with:
echo 1 > /proc/sys/vm/drop_caches
runspec command invoked through numactl i.e.:
numactl --interleave=all runspec <etc>
The Huawei RH2288H v2 and Huawei RH2288 v2 and
the Huawei RH1288 v2 models are electronically equivalent.
Huawei
Huawei RH2288 v2

SPECint_rate2006 = 671
SPECint_rate_base2006 = 648

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Test date: Apr-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

General Notes (Continued)
The results have been measured on a Huawei RH2288H v2 model

Base Compiler Invocation

C benchmarks:
icc -m32

C++ benchmarks:
icpc -m32

Base Portability Flags

400.perlbench: -DSPEC_CPU_LINUX_IA32
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Base Optimization Flags

C benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3

C++ benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3
-Wl,-z,muldefs -L/sh -lsmartheap

Base Other Flags

C benchmarks:
403.gcc: -Dalloca=_alloca

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m32

400.perlbench: icc -m64
401.bzip2: icc -m64
456.hmmer: icc -m64

Continued on next page
Huawei RH2288 v2

SPEC CINT2006 Result

SPECint_rate2006 = 671
SPECint_rate_base2006 = 648

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Test date: Apr-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Peak Compiler Invocation (Continued)

458.sjeng: icc -m64

C++ benchmarks:
icpc -m32

Peak Portability Flags

400.perlbench: -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64
401.bzip2: -DSPEC_CPU_LP64
456.hmmer: -DSPEC_CPU_LP64
458.sjeng: -DSPEC_CPU_LP64
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Peak Optimization Flags

C benchmarks:

400.perlbench: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -auto-ilp32
401.bzip2: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -opt-prefetch -auto-ilp32 -ansi-alias
403.gcc: basepeak = yes
429.mcf: basepeak = yes
445.gobmk: -xSSE4.2(pass 2) -prof-gen(pass 1) -prof-use(pass 2) -ansi-alias -opt-mem-layout-trans=3
456.hmmer: -xSSE4.2 -ipo -O3 -no-prec-div -unroll2 -auto-ilp32
458.sjeng: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll4 -auto-ilp32
462.libquantum: basepeak = yes
464.h264ref: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll2 -ansi-alias

Continued on next page
Huawei
Huawei RH2288 v2

SPECint_rate2006 = 671
SPECint_rate_base2006 = 648

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Peak Optimization Flags (Continued)

C++ benchmarks:

471.omnetpp: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
-O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
-ansi-alias -opt-ra-region-strategy=block -Wl,-z,muldefs
-L/sh -lsmartheap

473.astar: basepeak = yes
483.xalancbmk: basepeak = yes

Peak Other Flags

C benchmarks:

403.gcc: -Dalloca=_alloca

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.xml
http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-V1.0-IVB-RevG.xml

SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester.
For other inquiries, please contact webmaster@spec.org.

Tested with SPEC CPU2006 v1.2.
Originally published on 25 June 2014.