Huawei CH121 (Intel Xeon E5-2670 v2)

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

SPECint_rate2006 = 816
SPECint_rate_base2006 = 788

CPU Name: Intel Xeon E5-2670 v2
CPU Characteristics: Intel Turbo Boost Technology up to 3.30 GHz
CPU MHz: 2500
FPU: Integrated
CPU(s) enabled: 20 cores, 2 chips, 10 cores/chip, 2 threads/core
CPU(s) orderable: 1,2 chip
Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 25 MB I+D on chip per chip
Other Cache: None
Memory: 256 GB (16 x 16 GB 2Rx4 PC3-14900R-13, ECC)
Disk Subsystem: 1 x 300 GB SAS, 10000 RPM
Other Hardware: None

Operating System: Red Hat Enterprise Linux Server release 6.5 (Santiago)
Composer: C/C++: Version 14.0.0.080 of Intel C++ Studio XE for Linux
Auto Parallel: No
File System: ext4
System State: Run level 3 (multi-user)
Base Pointers: 32-bit
Peak Pointers: 32/64-bit
Other Software: Microquill SmartHeap V10.0
SPEC CINT2006 Result

Huawei

Huawei CH121 (Intel Xeon E5-2670 v2)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench</td>
<td>40</td>
<td>655</td>
<td>597</td>
<td>653</td>
<td>599</td>
<td>657</td>
<td>595</td>
<td>40</td>
<td>543</td>
<td>720</td>
<td>545</td>
<td>717</td>
<td>543</td>
<td>720</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bzip2</td>
<td>40</td>
<td>904</td>
<td>427</td>
<td>906</td>
<td>426</td>
<td>905</td>
<td>427</td>
<td>40</td>
<td>885</td>
<td>436</td>
<td>890</td>
<td>434</td>
<td>885</td>
<td>436</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gcc</td>
<td>40</td>
<td>521</td>
<td>618</td>
<td>519</td>
<td>621</td>
<td>521</td>
<td>618</td>
<td>40</td>
<td>521</td>
<td>618</td>
<td>519</td>
<td>621</td>
<td>521</td>
<td>618</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcf</td>
<td>40</td>
<td>308</td>
<td>1180</td>
<td>309</td>
<td>1180</td>
<td>309</td>
<td>1180</td>
<td>40</td>
<td>308</td>
<td>1180</td>
<td>309</td>
<td>1180</td>
<td>309</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gobmk</td>
<td>40</td>
<td>716</td>
<td>586</td>
<td>711</td>
<td>590</td>
<td>712</td>
<td>590</td>
<td>40</td>
<td>697</td>
<td>602</td>
<td>695</td>
<td>604</td>
<td>692</td>
<td>606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hammer</td>
<td>40</td>
<td>345</td>
<td>1080</td>
<td>347</td>
<td>1080</td>
<td>347</td>
<td>1080</td>
<td>40</td>
<td>316</td>
<td>1180</td>
<td>317</td>
<td>1180</td>
<td>317</td>
<td>1180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sfeng</td>
<td>40</td>
<td>826</td>
<td>586</td>
<td>827</td>
<td>585</td>
<td>826</td>
<td>586</td>
<td>40</td>
<td>801</td>
<td>604</td>
<td>771</td>
<td>628</td>
<td>797</td>
<td>608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>libquantum</td>
<td>40</td>
<td>157</td>
<td>5280</td>
<td>157</td>
<td>5280</td>
<td>157</td>
<td>5280</td>
<td>40</td>
<td>157</td>
<td>5280</td>
<td>157</td>
<td>5280</td>
<td>157</td>
<td>5280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h264ref</td>
<td>40</td>
<td>887</td>
<td>998</td>
<td>892</td>
<td>993</td>
<td>886</td>
<td>999</td>
<td>40</td>
<td>878</td>
<td>1010</td>
<td>883</td>
<td>1000</td>
<td>880</td>
<td>1010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>omnetpp</td>
<td>40</td>
<td>591</td>
<td>423</td>
<td>590</td>
<td>424</td>
<td>591</td>
<td>423</td>
<td>40</td>
<td>564</td>
<td>443</td>
<td>562</td>
<td>445</td>
<td>561</td>
<td>445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>astar</td>
<td>40</td>
<td>629</td>
<td>446</td>
<td>628</td>
<td>447</td>
<td>629</td>
<td>446</td>
<td>40</td>
<td>629</td>
<td>446</td>
<td>628</td>
<td>447</td>
<td>629</td>
<td>446</td>
<td></td>
<td></td>
</tr>
<tr>
<td>xalancbmk</td>
<td>40</td>
<td>329</td>
<td>839</td>
<td>329</td>
<td>839</td>
<td>329</td>
<td>839</td>
<td>40</td>
<td>329</td>
<td>839</td>
<td>329</td>
<td>839</td>
<td>328</td>
<td>841</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

Platform Notes

BIOS configuration:
Set Power Efficiency Mode to Custom
Baseboard Management Controller used to adjust the fan speed to 100%
Sysinfo program /spec/config/sysinfo.rev6818
$Rev: 6818 $ $Date:: 2012-07-17 #$ e86d102572650a6e4d596a3cee98f191
running on localhost Wed Jul 16 08:50:05 2014

This section contains SUT (System Under Test) info as seen by some common utilities. To remove or add to this section, see:
http://www.spec.org/cpu2006/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
 2 "physical id"s (chips)
 40 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with
Continued on next page
Huawei

Huawei CH121 (Intel Xeon E5-2670 v2)

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

SPECint_rate2006 = 816
SPECint_rate_base2006 = 788

Platform Notes (Continued)

cautions.)
 cpu cores : 10
 siblings : 20
 physical 0: cores 0 1 2 3 4 8 9 10 11 12
 physical 1: cores 0 1 2 3 4 8 9 10 11 12
 cache size : 25600 KB

From /proc/meminfo
 MemTotal: 264478184 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

/usr/bin/lsb_release -d
 Red Hat Enterprise Linux Server release 6.5 (Santiago)

From /etc/*release* /etc/*version*
 redhat-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)
 system-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)

uname -a:
 Linux localhost 2.6.32-431.el6.x86_64 #1 SMP Sun Nov 10 22:19:54 EST 2013
 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jul 16 08:47

SPEC is set to: /spec
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda2 ext4 272G 90G 168G 35% /

Additional information from dmidecode:
 BIOS Insyde Corp. RMIBV629 05/12/2014
 Memory:
 2x Hynix HMT42GR7AFR4C-RD 16 GB 1866 MHz 2 rank
 8x NO DIMM NO DIMM
 14x Samsung M393B2G70QH0-CMA 16 GB 1866 MHz 2 rank

(End of data from sysinfo program)

General Notes

Environment variables set by runspec before the start of the run:
 LD_LIBRARY_PATH = "/spec/libs/32:/spec/libs/64:/spec/sh"

Binaries compiled on a system with 1x Core i7-860 CPU + 8GB
memory using RedHat EL 6.4
Transparent Huge Pages enabled with:
 echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled
Filesystem page cache cleared with:
 echo 1>/proc/sys/vm/drop_caches
runspec command invoked through numactl i.e.:

Continued on next page
Huawei

Huawei CH121 (Intel Xeon E5-2670 v2)

SPECint_rate2006 = 816
SPECint_rate_base2006 = 788

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei
Test date: Jul-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

General Notes (Continued)
numactl --interleave=all runspec <etc>

Base Compiler Invocation

C benchmarks:
icc -m32

C++ benchmarks:
icpc -m32

Base Portability Flags

400.perlbench: -DSPEC_CPU_LINUX_IA32
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Base Optimization Flags

C benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3

C++ benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3
-Wl,-z,muldefs -L/sh -lsmartheap

Base Other Flags

C benchmarks:
403.gcc: -Dalloca=alloca

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m32

400.perlbench: icc -m64
401.bzip2: icc -m64
456.hmmer: icc -m64

Continued on next page
Huawei
Huawei CH121 (Intel Xeon E5-2670 v2)

SPECint_rate2006 = 816
SPECint_rate_base2006 = 788

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Test date: Jul-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Peak Compiler Invocation (Continued)

458.sjeng: icc -m64

C++ benchmarks:
icpc -m32

Peak Portability Flags

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>-DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>-DSPEC_CPU_LP64</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>-DSPEC_CPU_LP64</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>-DSPEC_CPU_LP64</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>-DSPEC_CPU_LINUX</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>-DSPEC_CPU_LINUX</td>
</tr>
</tbody>
</table>

Peak Optimization Flags

C benchmarks:

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>-xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -prof-use(pass 2) -O3(pass 2) -no-prec-div(pass 2) -auto-ilp32</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>-xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -opt-prefetch -auto-ilp32 -ansi-alias</td>
</tr>
<tr>
<td>403.gcc</td>
<td>basepeak = yes</td>
</tr>
<tr>
<td>429.mcf</td>
<td>basepeak = yes</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>-xSSE4.2(pass 2) -prof-gen(pass 1) -prof-use(pass 2) -ansi-alias -opt-mem-layout-trans=3</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>-xSSE4.2 -ipo -O3 -no-prec-div -unroll2 -auto-ilp32</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>-xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll4 -auto-ilp32</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>basepeak = yes</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>-xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2) -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2) -unroll2 -ansi-alias</td>
</tr>
</tbody>
</table>

Continued on next page
Huawei CH121 (Intel Xeon E5-2670 v2) SPECint_rate2006 = 816
SPECint_rate_base2006 = 788

<table>
<thead>
<tr>
<th>Huawei CH121 (Intel Xeon E5-2670 v2)</th>
<th>Huawei CH121 (Intel Xeon E5-2670 v2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2006 license: 3175</td>
<td>Test date: Jul-2014</td>
</tr>
<tr>
<td>Test sponsor: Huawei</td>
<td>Hardware Availability: Sep-2013</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Nov-2013</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

C++ benchmarks:

471.omnetpp: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
-o3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
-ansi-alias -opt-ra-region-strategy=block -Wl,-z,muldefs
-L/sh -lsmartheap

473.astar: basepeak = yes
483.xalancbmk: basepeak = yes

Peak Other Flags

C benchmarks:

403.gcc: -Dalloca=_alloca

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.xml
http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-V1.0-IVB-RevG.xml

SPEC and SPECint are registered trademarks of the Standard Performance
Evaluation Corporation. All other brand and product names appearing in
this result are trademarks or registered trademarks of their respective
holders.

For questions about this result, please contact the tester.
For other inquiries, please contact webmaster@spec.org.

Tested with SPEC CPU2006 v1.2.
Originally published on 2 September 2014.