Huawei

Huawei CH220 (Intel Xeon E5-2637 v2)

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

SPECint_rate2006 = 432
SPECint_rate_base2006 = 415

Test date: Aug-2014
Hardware Availability: Sep-2013

Software

Operating System: Red Hat Enterprise Linux Server release 6.5 (Santiago) 2.6.32-431.el6.x86_64
Compiler: C/C++: Version 14.0.0.080 of Intel C++ Studio XE for Linux
Auto Parallel: No
File System: ext4
System State: Run level 3 (multi-user)
Base Pointers: 32-bit
Peak Pointers: 32/64-bit
Other Software: Microquill SmartHeap V10.0

Hardware

CPU Name: Intel Xeon E5-2637 v2
CPU Characteristics: Intel Turbo Boost Technology up to 3.80 GHz
CPU MHz: 3500
FPU: Integrated
CPU(s) enabled: 8 cores, 2 chips, 4 cores/chip, 2 threads/core
CPU(s) orderable: 1.2 chip
Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 15 MB I+D on chip per chip
Other Cache: None
Memory: 256 GB (16 x 16 GB 2R x 4 PC3-14900R-13, ECC)
Disk Subsystem: 1 X 300 GB SAS 10000 RPM
Other Hardware: None
SPEC CINT2006 Result

Huawei
Huawei CH220 (Intel Xeon E5-2637 v2)

SPECint_rate2006 = 432
SPECint_rate_base2006 = 415

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Test date: Aug-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>400.perlbench</td>
<td>16</td>
<td>525</td>
<td>297</td>
<td>530</td>
<td>295</td>
<td>530</td>
<td>295</td>
<td>16</td>
<td>437</td>
<td>358</td>
<td>439</td>
<td>356</td>
<td>442</td>
<td>354</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>16</td>
<td>675</td>
<td>229</td>
<td>679</td>
<td>227</td>
<td>675</td>
<td>229</td>
<td>16</td>
<td>660</td>
<td>234</td>
<td>658</td>
<td>235</td>
<td>659</td>
<td>234</td>
</tr>
<tr>
<td>429.mgrid</td>
<td>16</td>
<td>223</td>
<td>656</td>
<td>222</td>
<td>656</td>
<td>223</td>
<td>656</td>
<td>16</td>
<td>223</td>
<td>656</td>
<td>222</td>
<td>656</td>
<td>223</td>
<td>656</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>16</td>
<td>568</td>
<td>296</td>
<td>565</td>
<td>297</td>
<td>563</td>
<td>298</td>
<td>16</td>
<td>558</td>
<td>301</td>
<td>559</td>
<td>301</td>
<td>559</td>
<td>301</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>16</td>
<td>270</td>
<td>553</td>
<td>271</td>
<td>551</td>
<td>271</td>
<td>552</td>
<td>16</td>
<td>240</td>
<td>622</td>
<td>240</td>
<td>622</td>
<td>241</td>
<td>620</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>16</td>
<td>668</td>
<td>290</td>
<td>670</td>
<td>289</td>
<td>671</td>
<td>289</td>
<td>16</td>
<td>624</td>
<td>310</td>
<td>627</td>
<td>309</td>
<td>638</td>
<td>303</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>16</td>
<td>124</td>
<td>2680</td>
<td>124</td>
<td>2680</td>
<td>124</td>
<td>2680</td>
<td>16</td>
<td>124</td>
<td>2680</td>
<td>124</td>
<td>2680</td>
<td>124</td>
<td>2680</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>16</td>
<td>706</td>
<td>502</td>
<td>707</td>
<td>501</td>
<td>701</td>
<td>505</td>
<td>16</td>
<td>696</td>
<td>509</td>
<td>694</td>
<td>510</td>
<td>675</td>
<td>525</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>16</td>
<td>432</td>
<td>231</td>
<td>433</td>
<td>231</td>
<td>433</td>
<td>231</td>
<td>16</td>
<td>404</td>
<td>248</td>
<td>403</td>
<td>248</td>
<td>404</td>
<td>248</td>
</tr>
<tr>
<td>473.astar</td>
<td>16</td>
<td>451</td>
<td>249</td>
<td>454</td>
<td>247</td>
<td>454</td>
<td>247</td>
<td>16</td>
<td>451</td>
<td>249</td>
<td>454</td>
<td>247</td>
<td>454</td>
<td>247</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>16</td>
<td>230</td>
<td>480</td>
<td>230</td>
<td>479</td>
<td>230</td>
<td>480</td>
<td>16</td>
<td>230</td>
<td>480</td>
<td>230</td>
<td>479</td>
<td>230</td>
<td>480</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

Platform Notes

Sysinfo program /spec14/config/sysinfo.rev6818
$Rev: 6818 $ $Date:: 2012-07-17 $ e86d102572650a6e4d596a3cee98f191
running on localhost.localdomain Sat Aug 23 08:25:51 2014

This section contains SUT (System Under Test) info as seen by some common utilities. To remove or add to this section, see:
http://www.spec.org/cpu2006/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E5-2637 v2 @ 3.50GHz
 2 "physical id"s (chips)
 16 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 4
siblings : 8

Continued on next page
Huawei
Huawei CH220 (Intel Xeon E5-2637 v2)

SPEC CINT2006 Result

<table>
<thead>
<tr>
<th>test</th>
<th>SPECint_rate2006</th>
<th>SPECint_rate_base2006</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>432</td>
<td>415</td>
</tr>
</tbody>
</table>

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

```
physical 0: cores 1 2 3 4
cache size : 15360 KB
```

```
// From /proc/meminfo
MemTotal:       264478184 kb
HugePages_Total:       0
Hugepagesize:       2048 kb
```

```
// From /usr/bin/lsb_release -d
Red Hat Enterprise Linux Server release 6.5 (Santiago)
```

```
// Redhat-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)
system-release: Red Hat Enterprise Linux Server release 6.5 (Santiago)
```

```
// uname -a:
Linux localhost.localdomain 2.6.32-431.el6.x86_64 #1 SMP Sun Nov 10 22:19:54 EST 2013 x86_64 x86_64 x86_64 GNU/Linux
run-level 3 Aug 22 01:34
```

General Notes

```
Environment variables set by runspec before the start of the run:
LD_LIBRARY_PATH = "/spec14/libs/32:/spec14/libs/64:/spec14/sh"
```

```
// Binaries compiled on a system with 1x Core i7-860 CPU + 8GB memory using RedHat EL 6.4
Transparent Huge Pages enabled with:
echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled
```

```
// Filesystem page cache cleared with:
echo 1> /proc/sys/vm/drop_caches
runspec command invoked through numactl i.e.:
numactl --interleave=all runspec <etc>
```
Huawei

Huawei CH220 (Intel Xeon E5-2637 v2)

SPECint_rate2006 = 432
SPECint_rate_base2006 = 415

CPU2006 license: 3175
Test sponsor: Huawei
Test by: Huawei

Test date: Aug-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Base Compiler Invocation

C benchmarks:
icc -m32

C++ benchmarks:
icpc -m32

Base Portability Flags

400.perlbench: -DSPEC_CPU_LINUX_IA32
462.libquantum: -DSPEC_CPU_LINUX
483.xalancbmk: -DSPEC_CPU_LINUX

Base Optimization Flags

C benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3

C++ benchmarks:
-xSSE4.2 -ipo -O3 -no-prec-div -opt-prefetch -opt-mem-layout-trans=3
-Wl,-z,muldefs -L/sh -lsmartheap

Base Other Flags

C benchmarks:
403.gcc: -Dalloca=_alloca

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m32

400.perlbench: icc -m64
401.bzip2: icc -m64
456.hmmer: icc -m64
458.sjeng: icc -m64

C++ benchmarks:
icpc -m32
Huawei CH220 (Intel Xeon E5-2637 v2)

SPECint_rate2006 = 432
SPECint_rate_base2006 = 415

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei
Test date: Aug-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Peak Portability Flags

- 400.perlbench: -DSPEC_CPU_LP64 -DSPEC_CPU_LINUX_X64
- 401.bzip2: -DSPEC_CPU_LP64
- 456.hmmer: -DSPEC_CPU_LP64
- 458.sjeng: -DSPEC_CPU_LP64
- 462.libquantum: -DSPEC_CPU_LINUX
- 483.xalancbmk: -DSPEC_CPU_LINUX

Peak Optimization Flags

C benchmarks:

- 400.perlbench: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
 -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
 -auto-ilp32
- 401.bzip2: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
 -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
 -opt-prefetch -auto-ilp32 -ansi-alias
- 403.gcc: basepeak = yes
- 429.mcf: basepeak = yes
- 445.gobmk: -xSSE4.2(pass 2) -prof-gen(pass 1) -prof-use(pass 2)
 -ansi-alias -opt-mem-layout-trans=3
- 456.hmmer: -xSSE4.2 -ipo -O3 -no-prec-div -unroll2 -auto-ilp32
- 458.sjeng: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
 -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
 -unroll4 -auto-ilp32
- 462.libquantum: basepeak = yes
- 464.h264ref: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
 -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
 -unroll2 -ansi-alias

C++ benchmarks:

- 471.omnetpp: -xSSE4.2(pass 2) -prof-gen(pass 1) -ipo(pass 2)
 -O3(pass 2) -no-prec-div(pass 2) -prof-use(pass 2)
 -ansi-alias -opt-ra-region-strategy=block -Wl,-z,muldefs
 -L/sh -lsmartheap
- 473.astar: basepeak = yes

Continued on next page
Huawei

Huawei CH220 (Intel Xeon E5-2637 v2)

SPECint_rate2006 = 432
SPECint_rate_base2006 = 415

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

Test date: Aug-2014
Hardware Availability: Sep-2013
Software Availability: Nov-2013

Peak Optimization Flags (Continued)

483.xalancbmk: basepeak = yes

Peak Other Flags

C benchmarks:

403.gcc: -Dalloca=_alloca

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.xml
http://www.spec.org/cpu2006/flags/Huawei-Platform-Settings-V1.0-IVB-RevG.xml

SPEC and SPECint are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester.
For other inquiries, please contact webmaster@spec.org.

Tested with SPEC CPU2006 v1.2.
Originally published on 24 September 2014.