CPU2006 Flag Description
Supermicro SuperServer 6028UX-TR4 (X10DRU-X , Intel Xeon E5-2667 v3)

Copyright © 2006 Intel Corporation. All Rights Reserved.


Base Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Compiler Invocation

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Base Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3


Peak Portability Flags

410.bwaves

416.gamess

433.milc

434.zeusmp

435.gromacs

436.cactusADM

437.leslie3d

444.namd

447.dealII

450.soplex

453.povray

454.calculix

459.GemsFDTD

465.tonto

470.lbm

481.wrf

482.sphinx3


Base Optimization Flags

C benchmarks

C++ benchmarks

Fortran benchmarks

Benchmarks using both Fortran and C


Peak Optimization Flags

C benchmarks

433.milc

470.lbm

482.sphinx3

C++ benchmarks

444.namd

447.dealII

450.soplex

453.povray

Fortran benchmarks

410.bwaves

416.gamess

434.zeusmp

437.leslie3d

459.GemsFDTD

465.tonto

Benchmarks using both Fortran and C

435.gromacs

436.cactusADM

454.calculix

481.wrf


Implicitly Included Flags

This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.


Commands and Options Used to Submit Benchmark Runs

submit= MYMASK=`printf '0x%x' $((1<<$SPECCOPYNUM))`; /usr/bin/taskset $MYMASK $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command, using taskset, is used for Linux64 systems without numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:
submit= numactl --localalloc --physcpubind=$SPECCOPYNUM $command
When running multiple copies of benchmarks, the SPEC config file feature submit is used to cause individual jobs to be bound to specific processors. This specific submit command is used for Linux64 systems with support for numactl.
Here is a brief guide to understanding the specific command which will be found in the config file:

Shell, Environment, and Other Software Settings

numactl --interleave=all "runspec command"
Launching a process with numactl --interleave=all sets the memory interleave policy so that memory will be allocated using round robin on nodes. When memory cannot be allocated on the current interleave target fall back to other nodes.
KMP_STACKSIZE
Specify stack size to be allocated for each thread.
KMP_AFFINITY
Syntax: KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]
The value for the environment variable KMP_AFFINITY affects how the threads from an auto-parallelized program are scheduled across processors.
It applies to binaries built with -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows).
modifier:
    granularity=fine Causes each OpenMP thread to be bound to a single thread context.
type:
    compact Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as close as possible to the thread context where the <n> OpenMP thread was placed.
    scatter Specifying scatter distributes the threads as evenly as possible across the entire system.
permute: The permute specifier is an integer value controls which levels are most significant when sorting the machine topology map. A value for permute forces the mappings to make the specified number of most significant levels of the sort the least significant, and it inverts the order of significance.
offset: The offset specifier indicates the starting position for thread assignment.

Please see the Thread Affinity Interface article in the Intel Composer XE Documentation for more details.

Example: KMP_AFFINITY=granularity=fine,scatter
Specifying granularity=fine selects the finest granularity level and causes each OpenMP or auto-par thread to be bound to a single thread context.
This ensures that there is only one thread per core on cores supporting HyperThreading Technology
Specifying scatter distributes the threads as evenly as possible across the entire system.
Hence a combination of these two options, will spread the threads evenly across sockets, with one thread per physical core.

Example: KMP_AFFINITY=compact,1,0
Specifying compact will assign the n+1 thread to a free thread context as close as possible to thread n.
A default granularity=core is implied if no granularity is explicitly specified.
Specifying 1,0 sets permute and offset values of the thread assignment.
With a permute value of 1, thread n+1 is assigned to a consecutive core. With an offset of 0, the process's first thread 0 will be assigned to thread 0.
The same behavior is exhibited in a multisocket system.
OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP* parallel regions if no other value is specified in the application. This environment variable applies to both -openmp and -parallel (Linux and Mac OS X) or /Qopenmp and /Qparallel (Windows). Example syntax on a Linux system with 8 cores: export OMP_NUM_THREADS=8
Set stack size to unlimited
The command "ulimit -s unlimited" is used to set the stack size limit to unlimited.
Free the file system page cache
The command "echo 1> /proc/sys/vm/drop_caches" is used to free up the filesystem page cache.

Red Hat Specific features

Transparent Huge Pages
On RedHat EL 6 and later, Transparent Hugepages increase the memory page size from 4 kilobytes to 2 megabytes. Transparent Hugepages provide significant performance advantages on systems with highly contended resources and large memory workloads. If memory utilization is too high or memory is badly fragmented which prevents hugepages being allocated, the kernel will assign smaller 4k pages instead.
Hugepages are used by default unless the /sys/kernel/mm/redhat_transparent_hugepage/enabled field is changed from its RedHat EL6 default of 'always'.

Firmware / BIOS / Microcode Settings

Hardware Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to prefetch data into the cache according to a pattern-recognition algorithm. In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Adjacent Sector Prefetch:
This BIOS option allows the enabling/disabling of a processor mechanism to fetch the adjacent cache line within a 128-byte sector that contains the data needed due to a cache line miss. In some cases, setting this option to Disabled may improve performance. Users should only disable this option after performing application benchmarking to verify improved performance in their environment.
Energy/Performance Bias:
This BIOS option allows for processor performance and power optmization. Available settings are:
DRAM RAPL:
RAPL (Running Average Power Limit) provides mechanisms to enforce power consumption limits on supported processors.
Double Refresh:
C1E:
Enhanced C1 Power State boosts system performance.
CPU C3 Report:
Allows the BIOS to report the CPU C3 State (ACPI C2) to the operating system. During the CPU C3 State, the CPU clock generator is turned off.
CPU C6 Report:
Allows the BIOS to report the CPU C6 State (ACPI C3) to the operating system. During the CPU C6 State, the power to all cache is turned off.
C-state Limit:
Allows user to set the limit on the C-State package register
Hyper-Threading (ALL):
Enabled for Windows XP and Linux (OS optimized for Hyper-Threading Technology) and Disabled for other OS (OS not optimized for Hyper-Threading Technology). When Disabled only one thread per enabled core is enabled.
Double Refresh:
Description
Force SPD:
Forces the memory to run the frequency value selected despite DIMM per channel configuration. Normally (set as Auto), more DIMM per channel results in memory running at lower speeds.
Demand Scrub:
Demand Scrubbing is a process that allows the CPU to correct correctable memory errors found on a memory module. When the CPU or I/O issues a demand-read command, and the read data from memory turns out to be a correctable error, the error is corrected and sent to the requestor (the original source). Memory is updated as well. Select Enabled to use Demand Scrubbing for ECC memory correction.
Profile: (Profiles may override manually chosen BIOS settings)
COD Enable:
Cluster on Die (COD) mode logically splits a socket into 2 NUMA domains that are exposed to the OS with half the amount of cores and LLC assigned to each NUMA domain in a socket. This mode utilizes an on-die directory cache and in memory directory bits to determine whether a snoop needs to be sent. Use this mode for highly NUMA optimized workloads to get the lowest local memory latency and highest local memory bandwidth for NUMA workloads.
Early Snoop:
Early Snoop mode for workloads that are memory latency sensitive or for workloads that benefit from fast cache-to-cache transfer latencies from the remote socket. Snoops are sent out earlier, which is why memory latency is lower in this mode.
Enforce POR:
Enable to enforce Plan Of Record restrictions for DDR4 frequency and voltage programming. Memory speeds will be capped at Intel guidelines.
Memory Frequency:
Selects desired memory frequecy (within populated memory limits).

Flag description origin markings:

[user] Indicates that the flag description came from the user flags file.
[suite] Indicates that the flag description came from the suite-wide flags file.
[benchmark] Indicates that the flag description came from a per-benchmark flags file.

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2006/flags/Supermicro-Platform-Settings-V1.2-revF.20141203.html,
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.html.

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2006/flags/Supermicro-Platform-Settings-V1.2-revF.20141203.xml,
http://www.spec.org/cpu2006/flags/Intel-ic14.0-official-linux64.20140128.xml.


For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2006-2014 Standard Performance Evaluation Corporation
Tested with SPEC CPU2006 v1.2.
Report generated on Wed Dec 3 10:28:45 2014 by SPEC CPU2006 flags formatter v6906.