Huawei RH5885 V3 (Intel Xeon E7-8890 v4)

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei

CPU Name: Intel Xeon E7-8890 v4
CPU Characteristics: Intel Turbo Boost Technology up to 3.40 GHz
CPU MHz: 2200
FPU: Integrated
CPU(s) enabled: 96 cores, 4 chips, 24 cores/chip, 2 threads/core
CPU(s) orderable: 2,4 chips
Primary Cache: 32 KB I + 32 KB D on chip per core
Secondary Cache: 256 KB I+D on chip per core
L3 Cache: 60 MB I+D on chip per chip
Other Cache: None
Memory: 256 GB (16 x 16 GB 2Rx4 PC4-2133P-R, running at 1600 MHz)
Disk Subsystem: 2 x 600 GB SAS, 10K RPM
Other Hardware: None

Operating System: Red Hat Enterprise Linux Server release 7.2 (Maipo) 3.10.0-327.el7.x86_64
Compiler: C/C++: Version 16.0.0.101 of Intel C++ Studio XE for Linux
Auto Parallel: No
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 32-bit
Peak Pointers: 32/64-bit
Other Software: Microquill SmartHeap V10.2
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Base</td>
<td></td>
<td></td>
<td>Peak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400.perlbench</td>
<td>192</td>
<td>660</td>
<td>2840</td>
<td>701</td>
<td>2680</td>
<td>704</td>
<td>2660</td>
</tr>
<tr>
<td>401.bzip2</td>
<td>192</td>
<td>1213</td>
<td>1530</td>
<td>1278</td>
<td>1450</td>
<td>1350</td>
<td>1370</td>
</tr>
<tr>
<td>403.gcc</td>
<td>192</td>
<td>822</td>
<td>1880</td>
<td>817</td>
<td>1890</td>
<td>821</td>
<td>1880</td>
</tr>
<tr>
<td>429.mcf</td>
<td>192</td>
<td>727</td>
<td>2410</td>
<td>666</td>
<td>2630</td>
<td>679</td>
<td>2580</td>
</tr>
<tr>
<td>445.gobmk</td>
<td>192</td>
<td>770</td>
<td>2610</td>
<td>772</td>
<td>2610</td>
<td>770</td>
<td>2620</td>
</tr>
<tr>
<td>456.hmmer</td>
<td>192</td>
<td>476</td>
<td>3770</td>
<td>475</td>
<td>3770</td>
<td>474</td>
<td>3780</td>
</tr>
<tr>
<td>458.sjeng</td>
<td>192</td>
<td>852</td>
<td>2730</td>
<td>854</td>
<td>2720</td>
<td>853</td>
<td>2720</td>
</tr>
<tr>
<td>462.libquantum</td>
<td>192</td>
<td>115</td>
<td>34700</td>
<td>115</td>
<td>34600</td>
<td>115</td>
<td>34600</td>
</tr>
<tr>
<td>464.h264ref</td>
<td>192</td>
<td>887</td>
<td>4790</td>
<td>889</td>
<td>4780</td>
<td>891</td>
<td>4770</td>
</tr>
<tr>
<td>471.omnetpp</td>
<td>192</td>
<td>1108</td>
<td>1080</td>
<td>1100</td>
<td>1080</td>
<td>1109</td>
<td>1080</td>
</tr>
<tr>
<td>473.astar</td>
<td>192</td>
<td>920</td>
<td>1460</td>
<td>924</td>
<td>1460</td>
<td>923</td>
<td>1460</td>
</tr>
<tr>
<td>483.xalancbmk</td>
<td>192</td>
<td>576</td>
<td>2300</td>
<td>576</td>
<td>2300</td>
<td>582</td>
<td>2280</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Turbo mode set with:
cputpower -c all frequency-set -g performance

Platform Notes

BIOS configuration:
Set Power Efficiency Mode to Performance
Set Lock_step to disabled
Baseboard Management Controller used to adjust the fan speed to 100%
Set C-State to C0/C1
Sysinfo program /home/spec/config/sysinfo.rev6914
$Rev: 6914 $ $Date:: 2014-06-25 $$ e3fbb8667b5a285932ceab81e28219e1

This section contains SUT (System Under Test) info as seen by some common utilities. To remove or add to this section, see:
http://www.spec.org/cpu2006/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz
Continued on next page
Platform Notes (Continued)

4 "physical id"s (chips)
192 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 24
siblings : 48
physical 0: cores 0 1 2 3 4 5 8 9 10 11 12 13 16 17 18 19 20 21 24 25 26 27 28 29
physical 1: cores 0 1 2 3 4 5 8 9 10 11 12 13 16 17 18 19 20 21 24 25 26 27 28 29
physical 2: cores 0 1 2 3 4 5 8 9 10 11 12 13 16 17 18 19 20 21 24 25 26 27 28 29
physical 3: cores 0 1 2 3 4 5 8 9 10 11 12 13 16 17 18 19 20 21 24 25 26 27 28 29
cache size : 61440 KB

From /proc/meminfo
MemTotal: 263834464 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.2 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"
 VERSION_ID="7.2"
 PRETTY_NAME="Red Hat Enterprise Linux Server 7.2 (Maipo)"
 ANSI_COLOR="0;31"
 CPE_NAME="cpe:/o:redhat:enterprise_linux:7.2:GA:server"
redhat-release: Red Hat Enterprise Linux Server release 7.2 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.2 (Maipo)

uname -a:
Linux RH5885v3 3.10.0-327.el7.x86_64 #1 SMP Thu Oct 29 17:29:29 EDT 2015
x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Sep 21 11:03

SPEC is set to: /home/spec
Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/rhel-home xfs 485G 8.0G 477G 2% /home

Additional information from dmidecode:

Warning: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Continued on next page
Huawei RH5885 V3 (Intel Xeon E7-8890 v4)

SPECint_rate2006 = Not Run

SPECint_rate_base2006 = 2860

CPU2006 license: 3175
Test sponsor: Huawei
Tested by: Huawei
Test date: Sep-2016
Hardware Availability: Jun-2016
Software Availability: Nov-2015

Platform Notes (Continued)

BIOS American Megatrends Inc. BLISV767 07/27/2016
Memory:
16x Hynix HMA42GR7MF4N-TF 16 GB 2 rank 2133 MHz, configured at 1600 MHz
32x NO DIMM NO DIMM

(End of data from sysinfo program)

General Notes

Environment variables set by runspec before the start of the run:
LD_LIBRARY_PATH = "/home/spec/libs/32:/home/spec/libs/64:/home/spec/sh"

Binaries compiled on a system with 1x Intel Core i5-4670K CPU + 32GB memory using RedHat EL 7.1

Transparent Huge Pages enabled with:

```
    echo always > /sys/kernel/mm/transparent_hugepage/enabled
```

Filesystem page cache cleared with:

```
    echo 1> /proc/sys/vm/drop_caches
```

runcspec command invoked through numactl i.e.:

```
    numactl --interleave=all runspec <etc>
```

Base Compiler Invocation

C benchmarks:

```
    icc  -m32 -L/opt/intel/compilers_and_libraries_2016/linux/compiler/lib/ia32_lin
```

C++ benchmarks:

```
    icpc  -m32 -L/opt/intel/compilers_and_libraries_2016/linux/compiler/lib/ia32_lin
```

Base Portability Flags

```
400.perlbench: -D_FILE_OFFSET_BITS=64 -DSPEC_CPU_LINUX_IA32
401.bzip2: -D_FILE_OFFSET_BITS=64
403.gcc: -D_FILE_OFFSET_BITS=64
429.mcf: -D_FILE_OFFSET_BITS=64
445.gobmk: -D_FILE_OFFSET_BITS=64
456.hmmer: -D_FILE_OFFSET_BITS=64
458.sjeng: -D_FILE_OFFSET_BITS=64
462.libquantum: -D_FILE_OFFSET_BITS=64 -DSPEC_CPU_LINUX
464.h264ref: -D_FILE_OFFSET_BITS=64
471.omnetpp: -D_FILE_OFFSET_BITS=64
473.astar: -D_FILE_OFFSET_BITS=64
483.xalancbmk: -D_FILE_OFFSET_BITS=64 -DSPEC_CPU_LINUX
```
Huawei

Huawei RH5885 V3 (Intel Xeon E7-8890 v4)

<table>
<thead>
<tr>
<th>SPECint_rate2006 =</th>
<th>Not Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECint_rate_base2006 =</td>
<td>2860</td>
</tr>
</tbody>
</table>

CPU2006 license: 3175
Test sponsor: Huawei
Test date: Sep-2016

Tested by: Huawei
Hardware Availability: Jun-2016
Software Availability: Nov-2015

Base Optimization Flags

C benchmarks:
- -xCORE-AVX2
- -ipo
- -O3
- -no-prec-div
- -opt-prefetch
- -opt-mem-layout-trans=3

C++ benchmarks:
- -xCORE-AVX2
- -ipo
- -O3
- -no-prec-div
- -opt-prefetch
- -opt-mem-layout-trans=3
- -Wl,-z,muldefs
- -L/sh -lsmartheap

Base Other Flags

C benchmarks:
- 403.gcc: -Dalloca=_alloca

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links: