SPEC® CPU2017 Floating Point Speed Result

Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106)

<table>
<thead>
<tr>
<th>SPECspeed2017_fp_base</th>
<th>SPECspeed2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>47.4</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Threads

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>16</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>16</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>16</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>16</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>16</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>16</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>16</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>16</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>16</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>16</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Bronze 3106
- **Max MHz.:** 1700
- **Nominal:** 1700
- **Enabled:** 16 cores, 2 chips
- **Orderable:** 1,2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **Cache L2:** 1 MB I+D on chip per core
- **Cache L3:** 11 MB I+D on chip per chip
- **Memory:** 384 GB (24 x 16 GB 2Rx8 PC4-2666V-R, running at 2133)
- **Storage:** 1 x 1200 GB SAS, 10000 RPM
- **Other:** None

Software

- **OS:** Red Hat Enterprise Linux Server release 7.4 (Maipo)
- **Compiler:** C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux; Fortran: Version 18.0.0.128 of Intel Fortran Compiler for Linux
- **Parallel:** Yes
- **Firmware:** Version 0.62 Released Mar-2018
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** None
SPEC CPU2017 Floating Point Speed Result

Huawei
Huawei CH121 V5 (Intel Xeon Bronze 3106)

SPECspeed2017_fp_base = 46.5
SPECspeed2017_fp_peak = 47.4

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>16</td>
<td>214</td>
<td>276</td>
<td>213</td>
<td>276</td>
<td>214</td>
<td>276</td>
<td>213</td>
<td>276</td>
<td>213</td>
<td>276</td>
<td>16</td>
<td>214</td>
<td>276</td>
<td>214</td>
<td>276</td>
<td>213</td>
<td>276</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>16</td>
<td>287</td>
<td>58.0</td>
<td>287</td>
<td>58.1</td>
<td>288</td>
<td>57.8</td>
<td>287</td>
<td>58.1</td>
<td>287</td>
<td>58.0</td>
<td>16</td>
<td>282</td>
<td>59.1</td>
<td>283</td>
<td>59.0</td>
<td>283</td>
<td>59.0</td>
</tr>
<tr>
<td>619.libm_s</td>
<td>16</td>
<td>176</td>
<td>29.7</td>
<td>176</td>
<td>29.8</td>
<td>176</td>
<td>29.7</td>
<td>176</td>
<td>29.8</td>
<td>176</td>
<td>29.8</td>
<td>16</td>
<td>176</td>
<td>29.7</td>
<td>176</td>
<td>29.8</td>
<td>176</td>
<td>29.8</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>16</td>
<td>399</td>
<td>33.1</td>
<td>404</td>
<td>32.7</td>
<td>399</td>
<td>33.2</td>
<td>399</td>
<td>33.2</td>
<td>399</td>
<td>33.2</td>
<td>16</td>
<td>394</td>
<td>33.6</td>
<td>393</td>
<td>33.6</td>
<td>394</td>
<td>33.6</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>16</td>
<td>392</td>
<td>22.6</td>
<td>391</td>
<td>22.7</td>
<td>392</td>
<td>22.6</td>
<td>391</td>
<td>22.7</td>
<td>392</td>
<td>22.6</td>
<td>16</td>
<td>391</td>
<td>22.7</td>
<td>390</td>
<td>22.7</td>
<td>392</td>
<td>22.6</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>16</td>
<td>360</td>
<td>32.9</td>
<td>368</td>
<td>32.2</td>
<td>359</td>
<td>33.1</td>
<td>360</td>
<td>32.9</td>
<td>368</td>
<td>32.2</td>
<td>16</td>
<td>339</td>
<td>35.1</td>
<td>338</td>
<td>35.1</td>
<td>341</td>
<td>34.9</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>16</td>
<td>498</td>
<td>29.0</td>
<td>499</td>
<td>28.9</td>
<td>500</td>
<td>28.8</td>
<td>498</td>
<td>29.0</td>
<td>499</td>
<td>28.9</td>
<td>16</td>
<td>498</td>
<td>29.0</td>
<td>498</td>
<td>28.9</td>
<td>499</td>
<td>28.9</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>16</td>
<td>337</td>
<td>51.8</td>
<td>337</td>
<td>51.9</td>
<td>337</td>
<td>51.9</td>
<td>337</td>
<td>51.9</td>
<td>337</td>
<td>51.9</td>
<td>16</td>
<td>337</td>
<td>51.8</td>
<td>337</td>
<td>51.9</td>
<td>337</td>
<td>51.9</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>16</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
<td>16</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
<td>177</td>
<td>51.5</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>16</td>
<td>301</td>
<td>52.4</td>
<td>301</td>
<td>52.3</td>
<td>302</td>
<td>52.1</td>
<td>301</td>
<td>52.3</td>
<td>302</td>
<td>52.1</td>
<td>16</td>
<td>275</td>
<td>57.2</td>
<td>276</td>
<td>57.1</td>
<td>277</td>
<td>56.9</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:
KMP_AFFINITY = "granularity=fine,compact"
OMP_STACKSIZE = "192M"

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.4
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3>/proc/sys/vm/drop_caches
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
Power Policy Set to Load Balance
XPT Prefetch Set to Enabled

(Continued on next page)
SPEC CPU2017 Floating Point Speed Result

Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106) | SPECspeed2017_fp_base = 46.5
| SPECspeed2017_fp_peak = 47.4

| CPU2017 License: | 3175
| Test Sponsor: | Huawei
| Tested by: | Huawei
| Test Date: | Jun-2018
| Hardware Availability: | Jul-2017
| Software Availability: | Jan-2018

Platform Notes (Continued)

Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bce091c0f
running on localhost.localdomain Tue Jun 19 17:13:36 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

- model name : Intel(R) Xeon(R) Bronze 3106 CPU @ 1.70GHz
- 2 "physical id"s (chips)
- 16 "processors"
- cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 - cpu cores : 8
 - siblings : 8
 - physical 0: cores 0 1 2 3 4 5 6 7
 - physical 1: cores 0 1 2 3 4 5 6 7

From lscpu:

- Architecture: x86_64
- CPU op-mode(s): 32-bit, 64-bit
- Byte Order: Little Endian
- CPU(s): 16
- On-line CPU(s) list: 0-15
- Thread(s) per core: 1
- Core(s) per socket: 8
- Socket(s): 2
- NUMA node(s): 2
- Vendor ID: GenuineIntel
- CPU family: 6
- Model: 85
- Model name: Intel(R) Xeon(R) Bronze 3106 CPU @ 1.70GHz
- Stepping: 4
- CPU MHz: 1700.000
- CPU max MHz: 1700.0000
- CPU min MHz: 800.0000
- BogoMIPS: 3400.00
- Virtualization: VT-x
- L1d cache: 32K
- L1i cache: 32K
- L2 cache: 1024K
- L3 cache: 11264K
- NUMA node0 CPU(s): 0-7
- NUMA node1 CPU(s): 8-15
- Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp

(Continued on next page)
SPEC CPU2017 Floating Point Speed Result

Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106)

<table>
<thead>
<tr>
<th>SPECspeed2017_fp_base</th>
<th>SPECspeed2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>47.4</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175

Test Date: Jun-2018

Test Sponsor: Huawei

Hardware Availability: Jul-2017

Tested by: Huawei

Software Availability: Jan-2018

Platform Notes (Continued)

```
lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
aperfmpref eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 sse3 fma
cx16 xpr pdc dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdtp_13 invpcid_single
intel_pt spec_ctrl ibpb_support tpr_shadow vnm flexpriority ept vpid fsgsbase
tsc_adjust bni1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq
rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1
cqm_llc cqm_occ_tcp cqm_mbm_total cqm_mbm_local dtherm arat pln pts
```

/proclinkinfo cache data

```
cache size : 11264 KB
```

From `numactl --hardware` WARNING: a numactl 'node' might or might not correspond to a physical chip.

```
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7
node 0 size: 194741 MB
node 0 free: 189530 MB
node 1 cpus: 8 9 10 11 12 13 14 15
node 1 size: 196608 MB
node 1 free: 191547 MB
node distances:
  node 0 1
  0: 10 21
  1: 21 10
```

From `/proc/meminfo`

```
MemTotal: 394174584 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
```

From `/etc/*release` /etc/*version*

```
os-release:
  NAME="Red Hat Enterprise Linux Server"
  VERSION="7.4 (Maipo)"
  ID="rhel"
  ID_LIKE="fedora"
  VARIANT="Server"
  VARIANT_ID="server"
  VERSION_ID="7.4"
  PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server
```

uname -a:

```
Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST
```

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106)

SPECspeed2017_fp_base = 46.5

SPECspeed2017_fp_peak = 47.4

Platform Notes (Continued)

```
run-level 3 Jun 19 06:46

SPEC is set to: /spec2017

Filesystem  Type Size  Used Avail Use% Mounted on
/dev/sda4    xfs   700G   35G  666G   5% /
```

Additional information from `dmidecode` follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 0.62 03/26/2018

Memory:

24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666, configured at 2133

(End of data from `sysinfo` program)

Compiler Version Notes

```
CC  619.lbm_s(base) 638.imagick_s(base, peak) 644.nab_s(base, peak)
```

```
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
```

```
CC  619.lbm_s(peak)
```

```
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
```

```
FC  607.cactuBSSN_s(base)
```

```
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
```

(Continued on next page)
SPEC CPU2017 Floating Point Speed Result

Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106)

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Jun-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Jan-2018</td>
</tr>
</tbody>
</table>

SPECspeed2017_fp_base = 46.5
SPECspeed2017_fp_peak = 47.4

Compiler Version Notes (Continued)

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Version</th>
<th>Date</th>
<th>Copyright Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>icpc (ICC)</td>
<td>18.0.0</td>
<td>20170811</td>
<td>Copyright (C) 1985-2017 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>icc (ICC)</td>
<td>18.0.0</td>
<td>20170811</td>
<td>Copyright (C) 1985-2017 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>ifort (IFORT)</td>
<td>18.0.0</td>
<td>20170811</td>
<td>Copyright (C) 1985-2017 Intel Corporation. All rights reserved.</td>
</tr>
</tbody>
</table>

Base Compiler Invocation

C benchmarks:
- icc

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3106)

<table>
<thead>
<tr>
<th>SPECspeed2017_fp_base</th>
<th>SPECspeed2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>47.4</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Base Compiler Invocation (Continued)

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
627.cam4_s: -DSPEC_LP64 -DSPEC_CASE_FLAG
628.pop2_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
 -assume byterecl
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -qopenmp -DSPEC_OPENMP

Fortran benchmarks:
-DSPEC_OPENMP -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=3 -qopenmp
-nostandard-realloc-lhs -align array32byte

Benchmarks using both Fortran and C:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs -align array32byte

(Continued on next page)
Base Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs -align array32byte

Base Other Flags

C benchmarks:
-m64 -std=c11

Fortran benchmarks:
-m64

Benchmarks using both Fortran and C:
-m64 -std=c11

Benchmarks using Fortran, C, and C++:
-m64 -std=c11

Peak Compiler Invocation

C benchmarks:
icc

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Peak Portability Flags

Same as Base Portability Flags
Huawei
Huawei CH121 V5 (Intel Xeon Bronze 3106)

| SPECspeed2017_fp_base = 46.5 |
| SPECspeed2017_fp_peak = 47.4 |

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Jan-2018

Peak Optimization Flags

C benchmarks:

619.lbm_s: basepeak = yes
638.imagick_s: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=3 -qopenmp
-DSPEC_OPENMP

644.nab_s: basepeak = yes

Fortran benchmarks:

603.bwaves_s: -prof-gen(pass 1) -prof-use(pass 2) -DSPEC_SUPPRESS_OPENMP
-DSPEC_OPENMP -O2 -xCORE-AVX2 -qopt-prefetch -ipo -O3
-ffinite-math-only -no-prec-div -qopt-mem-layout-trans=3
-qopenmp -nostandard-realloc-lhs -align array32byte

649.fotonik3d_s: basepeak = yes

654.roms_s: Same as 603.bwaves_s

Benchmarks using both Fortran and C:

621.wrf_s: -prof-gen(pass 1) -prof-use(pass 2) -O2 -xCORE-AVX2
-qopt-prefetch -ipo -O3 -ffinite-math-only -no-prec-div
-qopt-mem-layout-trans=3 -DSPEC_SUPPRESS_OPENMP -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs -align array32byte

627.cam4_s: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=3 -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs -align array32byte

628.pop2_s: Same as 621.wrf_s

Benchmarks using Fortran, C, and C++:

-prof-gen(pass 1) -prof-use(pass 2) -O2 -xCORE-AVX2 -qopt-prefetch
-ipo -O3 -ffinite-math-only -no-prec-div -qopt-mem-layout-trans=3
-DSPEC_SUPPRESS_OPENMP -qopenmp -DSPEC_OPENMP -nostandard-realloc-lhs
-align array32byte

Peak Other Flags

C benchmarks:

-m64 -std=c11

(Continued on next page)
Huawei CH121 V5 (Intel Xeon Bronze 3106)

<table>
<thead>
<tr>
<th>SPECs2017 fp_base</th>
<th>SPECs2017 fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.5</td>
<td>47.4</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Peak Other Flags (Continued)

- Fortran benchmarks:
 - `-m64`
- Benchmarks using both Fortran and C:
 - `-m64 -std=c11`
- Benchmarks using Fortran, C, and C++:
 - `-m64 -std=c11`

The flags files that were used to format this result can be browsed at:

- http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:

- http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-06-19 17:13:35-0400.
Originally published on 2018-07-10.