Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

SPECraten2017_int_base = 108
SPECraten2017_int_peak = 115

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Hardware

<table>
<thead>
<tr>
<th>CPU Name</th>
<th>Intel Xeon Silver 4116</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max MHz.</td>
<td>3000</td>
</tr>
<tr>
<td>Nominal</td>
<td>2100</td>
</tr>
<tr>
<td>Enabled</td>
<td>24 cores, 2 chips, 2 threads/core</td>
</tr>
<tr>
<td>Orderable</td>
<td>1.2 chips</td>
</tr>
<tr>
<td>Cache L1</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>Cache L2</td>
<td>1 MB I+D on chip per core</td>
</tr>
<tr>
<td>Cache L3</td>
<td>16.5 MB I+D on chip per chip</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
<tr>
<td>Memory</td>
<td>384 GB (12 x 32 GB 2Rx4 PC4-2666V-R, running at 2400)</td>
</tr>
<tr>
<td>Storage</td>
<td>1 x 2000 GB SATA, 7200 RPM</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>OS</th>
<th>Red Hat Enterprise Linux Server release 7.4 (Maipo) 3.10.0-693.11.6.el7.x86_64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler</td>
<td>C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux; Fortran: Version 18.0.0.128 of Intel Fortran Compiler for Linux</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>Firmware</td>
<td>Version 0.08 Released May-2018</td>
</tr>
<tr>
<td>File System</td>
<td>xfs</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>32/64-bit</td>
</tr>
<tr>
<td>Other</td>
<td>jemalloc: jemalloc memory allocator library V5.0.1;</td>
</tr>
</tbody>
</table>
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>48</td>
<td>944</td>
<td>81.0</td>
<td>922</td>
<td>82.9</td>
<td>912</td>
<td>83.8</td>
<td>48</td>
<td>747</td>
<td>102</td>
<td>758</td>
<td>101</td>
<td>754</td>
<td>101</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>48</td>
<td>710</td>
<td>95.7</td>
<td>711</td>
<td>95.6</td>
<td>711</td>
<td>95.6</td>
<td>48</td>
<td>608</td>
<td>112</td>
<td>609</td>
<td>112</td>
<td>608</td>
<td>112</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>48</td>
<td>580</td>
<td>134</td>
<td>578</td>
<td>134</td>
<td>587</td>
<td>132</td>
<td>48</td>
<td>580</td>
<td>134</td>
<td>578</td>
<td>134</td>
<td>587</td>
<td>132</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>48</td>
<td>892</td>
<td>70.6</td>
<td>891</td>
<td>70.7</td>
<td>892</td>
<td>70.6</td>
<td>48</td>
<td>892</td>
<td>70.6</td>
<td>891</td>
<td>70.7</td>
<td>892</td>
<td>70.6</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>48</td>
<td>465</td>
<td>109</td>
<td>466</td>
<td>109</td>
<td>477</td>
<td>106</td>
<td>48</td>
<td>386</td>
<td>131</td>
<td>386</td>
<td>131</td>
<td>386</td>
<td>131</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>48</td>
<td>414</td>
<td>203</td>
<td>405</td>
<td>207</td>
<td>413</td>
<td>204</td>
<td>48</td>
<td>394</td>
<td>213</td>
<td>394</td>
<td>213</td>
<td>394</td>
<td>213</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>48</td>
<td>575</td>
<td>95.7</td>
<td>576</td>
<td>95.6</td>
<td>576</td>
<td>95.5</td>
<td>48</td>
<td>575</td>
<td>95.7</td>
<td>576</td>
<td>95.6</td>
<td>576</td>
<td>95.5</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>48</td>
<td>928</td>
<td>85.7</td>
<td>933</td>
<td>85.2</td>
<td>933</td>
<td>85.2</td>
<td>48</td>
<td>920</td>
<td>86.4</td>
<td>918</td>
<td>86.6</td>
<td>914</td>
<td>87.0</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>48</td>
<td>626</td>
<td>201</td>
<td>627</td>
<td>201</td>
<td>627</td>
<td>201</td>
<td>48</td>
<td>626</td>
<td>201</td>
<td>626</td>
<td>201</td>
<td>626</td>
<td>201</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>48</td>
<td>636</td>
<td>81.5</td>
<td>635</td>
<td>81.6</td>
<td>681</td>
<td>76.1</td>
<td>48</td>
<td>636</td>
<td>81.5</td>
<td>635</td>
<td>81.6</td>
<td>681</td>
<td>76.1</td>
</tr>
</tbody>
</table>

Submit Notes

The `numactl` mechanism was used to bind copies to processors. The config file option 'submit' was used to generate `numactl` commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by `runcpu` before the start of the run:

```
LD_LIBRARY_PATH = "/spec2017/lib/ia32;/spec2017/lib/intel64;/spec2017/je5.0.1-32;/spec2017/je5.0.1-64"
```

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM

memory using Redhat Enterprise Linux 7.4

Transparent Huge Pages enabled by default

Prior to `runcpu` invocation

Filesystem page cache synced and cleared with:

```
sync; echo 3> /proc/sys/vm/drop_caches
```

`runcpu` command invoked through `numactl` i.e.:

```
umactl --interleave=all runcpu <etc>
jemalloc: configured and built at default for 32bit (i686) and 64bit (x86_64) targets;
jemalloc: built with the RedHat Enterprise 7.4, and the system compiler gcc 4.8.5;
```

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>SPECrate2017_int_peak</th>
<th>SPECrate2017_int_base</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>Test Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3175</td>
<td>Jun-2018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Sponsor:</th>
<th>Hardware Availability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>Jul-2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tested by:</th>
<th>Software Availability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>Sep-2017</td>
</tr>
</tbody>
</table>

General Notes (Continued)

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
- Power Policy Set to Performance
- SNC Set to Enabled
- IMC Interleaving Set to 1-way Interleave
- XPT Prefetch Set to Enabled
- ADDDC Sparing Set to Disabled

Sysinfo program `/spec2017/bin/sysinfo`

`Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f`

running on localhost.localdomain Fri Jun 1 15:38:21 2018

SUT (System Under Test) info as seen by some common utilities.

For more information on this section, see

https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From `/proc/cpuinfo`

```
model name : Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
  2 "physical id"s (chips)
  48 "processors"

cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 12
siblings : 24
physical 0: cores 0 1 2 3 4 5 8 9 10 11 12 13
physical 1: cores 0 1 2 3 4 5 8 9 10 11 12 13
```

From `lscpu`

```
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                48
On-line CPU(s) list:   0-47
Thread(s) per core:    2
Core(s) per socket:    12
Socket(s):             2
NUMA node(s):          4
Vendor ID:             GenuineIntel
CPU family:            6
```

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>115</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Sep-2017

Spec CPU2017 Integer Rate Result
Copyright 2017-2018 Standard Performance Evaluation Corporation

Platform Notes (Continued)

- Model: 85
- Model name: Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
- Stepping: 4
- CPU MHz: 2100.000
- BogoMIPS: 4200.00
- Virtualization: VT-x
- L1d cache: 32K
- L1i cache: 32K
- L2 cache: 1024K
- L3 cache: 16896K
- NUMA node0 CPU(s): 0-2,6-8,24-26,30-32
- NUMA node1 CPU(s): 3-5,9-11,27-29,33-35
- NUMA node2 CPU(s): 12-14,18-20,36-38,42-44
- NUMA node3 CPU(s): 15-17,21-23,39-41,45-47
- Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_pt spec_ctrl ibpb_support tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 ersed invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local dtherm ida arat pln pts

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

<table>
<thead>
<tr>
<th>available</th>
<th>4 nodes (0-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>node 0 cpus</td>
<td>0 1 2 6 7 8 24 25 26 30 31 32</td>
</tr>
<tr>
<td>node 0 size</td>
<td>96437 MB</td>
</tr>
<tr>
<td>node 0 free</td>
<td>93841 MB</td>
</tr>
<tr>
<td>node 1 cpus</td>
<td>3 4 5 9 10 11 27 28 29 33 34 35</td>
</tr>
<tr>
<td>node 1 size</td>
<td>98304 MB</td>
</tr>
<tr>
<td>node 1 free</td>
<td>95997 MB</td>
</tr>
<tr>
<td>node 2 cpus</td>
<td>12 13 14 18 19 20 36 37 38 42 43 44</td>
</tr>
<tr>
<td>node 2 size</td>
<td>98304 MB</td>
</tr>
<tr>
<td>node 2 free</td>
<td>96035 MB</td>
</tr>
<tr>
<td>node 3 cpus</td>
<td>15 16 17 21 22 23 39 40 41 45 46 47</td>
</tr>
<tr>
<td>node 3 size</td>
<td>98304 MB</td>
</tr>
<tr>
<td>node 3 free</td>
<td>95605 MB</td>
</tr>
<tr>
<td>node distances:</td>
<td></td>
</tr>
<tr>
<td>node 0</td>
<td>1 2 3</td>
</tr>
<tr>
<td>0:</td>
<td>10 11 21 21</td>
</tr>
<tr>
<td>1:</td>
<td>11 10 21 21</td>
</tr>
</tbody>
</table>

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

SPECrate2017_int_base = 108
SPECrate2017_int_peak = 115

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

2: 21 21 10 11
3: 21 21 11 10

From /proc/meminfo
MemTotal: 394174556 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release*/etc/*version*
os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.4 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"
 VARIANT="Server"
 VARIANT_ID="server"
 VERSION_ID="7.4"
 PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server

uname -a:
Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jun 1 15:31

SPEC is set to: /spec2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda3 xfs 2.0T 57G 2.0T 3% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 0.08 05/02/2018
Memory:
 12x NO DIMM NO DIMM
 12x Samsung M393A4K40BB2-CTD 32 GB 2 rank 2666, configured at 2400

(End of data from sysinfo program)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

SPECrate2017_int_base = 108
SPECrate2017_int_peak = 115

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Compiler Version Notes

==
CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak)
 525.x264_r(base, peak) 557.xz_r(base, peak)
==
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CC 500.perlbench_r(peak) 502.gcc_r(peak)
==
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CXXC 520.omnetpp_r(base) 523.xalancbmk_r(base) 531.deepsjeng_r(base)
 541.leela_r(base)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
CXXC 520.omnetpp_r(peak) 523.xalancbmk_r(peak) 531.deepsjeng_r(peak)
 541.leela_r(peak)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
FC 548.exchange2_r(base, peak)
==
ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
iccc

C++ benchmarks:
icpc
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

SPECrate2017_int_base = 108
SPECrate2017_int_peak = 115

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Jun-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Sep-2017</td>
</tr>
</tbody>
</table>

Base Compiler Invocation (Continued)

Fortran benchmarks:
ifort

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
-W1, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte
-L/usr/local/je5.0.1-64/lib -ljemalloc

Base Other Flags

C benchmarks:
-m64 -std=c11

C++ benchmarks:
-m64

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

SPECrate2017_int_base = 108

SPECrate2017_int_peak = 115

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jun-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Base Other Flags (Continued)

Fortran benchmarks:
-m64

Peak Compiler Invocation

C benchmarks:
icc
C++ benchmarks:
icpc

Fortran benchmarks:
ifort

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64, -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -D_FILE_OFFSET_BITS=64, -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -Wl,-z,muldefs, -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-fno-strict-overflow -L/usr/local/je5.0.1-64/lib
-lijemalloc

502.gcc_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32
-Wl,-z,muldefs, -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -lijemalloc

(Continued on next page)
Peak Optimization Flags (Continued)

505.mcf_r: basepeak = yes

525.x264_r: -Wl, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
- qopt-mem-layout-trans=3 -fno-alias
- L/usr/local/je5.0.1-64/lib -ljemalloc

557.xz_r: basepeak = yes

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32
- Wl, -z, muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
- xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
- L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: basepeak = yes

541.leela_r: -Wl, -z, muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
- xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
- L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
- Wl, -z, muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
- qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte
- L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Other Flags

C benchmarks (except as noted below):
- m64 -std=c11

502.gcc_r: -m32 -std=c11

C++ benchmarks (except as noted below):
- m64

523.xalancbmk_r: -m32

Fortran benchmarks:
- m64
Huawei

Huawei 2288 V5 (Intel Xeon Silver 4116)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>108</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>115</td>
</tr>
</tbody>
</table>

CPU2017 License:	3175
Test Sponsor:	Huawei
Tested by:	Huawei
Test Date:	Jun-2018
Hardware Availability:	Jul-2017
Software Availability:	Sep-2017

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-06-01 03:38:20-0400.
Originally published on 2018-07-10.