Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jul-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Hardware

CPU Name: Intel Xeon Gold 6144
Max MHz.: 4200
Nominal: 3500
Enabled: 16 cores, 2 chips, 2 threads/core
Orderable: 1.2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 24.75 MB I+D on chip per chip
Other: None
Memory: 384 GB (24 x 16 GB DDR4-2666V-R)
Storage: 1 x 1200 GB SAS, 10000 RPM
Other: None

Software

OS: Red Hat Enterprise Linux Server release 7.4 (Maipo)
Compiler: C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux;
Fortran: Version 18.0.0.128 of Intel Fortran Compiler for Linux
Parallel: No
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: None
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>791</td>
<td>405</td>
<td>786</td>
<td>408</td>
<td>789</td>
<td>407</td>
<td>786</td>
<td>408</td>
<td>789</td>
<td>407</td>
<td>786</td>
<td>408</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td>400</td>
<td>101</td>
<td>399</td>
<td>102</td>
<td>399</td>
<td>101</td>
<td>400</td>
<td>101</td>
<td>399</td>
<td>101</td>
<td>400</td>
<td>101</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>344</td>
<td>88.4</td>
<td>346</td>
<td>88.0</td>
<td>344</td>
<td>88.4</td>
<td>346</td>
<td>88.0</td>
<td>344</td>
<td>88.4</td>
<td>346</td>
<td>88.0</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>32</td>
<td>810</td>
<td>103</td>
<td>810</td>
<td>103</td>
<td>808</td>
<td>104</td>
<td>807</td>
<td>104</td>
<td>806</td>
<td>104</td>
<td>805</td>
<td>104</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td>542</td>
<td>138</td>
<td>537</td>
<td>139</td>
<td>539</td>
<td>139</td>
<td>542</td>
<td>138</td>
<td>539</td>
<td>139</td>
<td>542</td>
<td>138</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>32</td>
<td>390</td>
<td>86.5</td>
<td>392</td>
<td>86.1</td>
<td>392</td>
<td>86.1</td>
<td>392</td>
<td>86.1</td>
<td>392</td>
<td>86.1</td>
<td>392</td>
<td>86.1</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td>450</td>
<td>159</td>
<td>462</td>
<td>155</td>
<td>458</td>
<td>156</td>
<td>458</td>
<td>156</td>
<td>457</td>
<td>157</td>
<td>441</td>
<td>163</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td>391</td>
<td>125</td>
<td>391</td>
<td>125</td>
<td>392</td>
<td>124</td>
<td>392</td>
<td>124</td>
<td>392</td>
<td>124</td>
<td>392</td>
<td>124</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td>431</td>
<td>130</td>
<td>432</td>
<td>130</td>
<td>431</td>
<td>130</td>
<td>432</td>
<td>133</td>
<td>432</td>
<td>133</td>
<td>432</td>
<td>133</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td>439</td>
<td>181</td>
<td>439</td>
<td>181</td>
<td>439</td>
<td>181</td>
<td>439</td>
<td>181</td>
<td>439</td>
<td>181</td>
<td>439</td>
<td>181</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td>333</td>
<td>162</td>
<td>334</td>
<td>161</td>
<td>334</td>
<td>161</td>
<td>327</td>
<td>165</td>
<td>328</td>
<td>164</td>
<td>328</td>
<td>164</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td>1026</td>
<td>122</td>
<td>1028</td>
<td>121</td>
<td>1027</td>
<td>121</td>
<td>1027</td>
<td>121</td>
<td>1029</td>
<td>121</td>
<td>1026</td>
<td>121</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td>569</td>
<td>89.4</td>
<td>562</td>
<td>90.5</td>
<td>561</td>
<td>90.6</td>
<td>560</td>
<td>90.6</td>
<td>549</td>
<td>92.6</td>
<td>551</td>
<td>92.3</td>
</tr>
</tbody>
</table>

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor.

For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit –s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

```
```

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM memory using Redhat Enterprise Linux 7.4

Transparent Huge Pages enabled by default

Prior to runcpu invocation

Filesystem page cache synced and cleared with:
```
sync; echo 3>/proc/sys/vm/drop_caches
```

runcpu command invoked through numactl i.e.:
```
numactl --interleave=all runcpu <etc>
```

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

(Continued on next page)
Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>135</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jul-2018
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Jan-2018

General Notes (Continued)
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
Power Policy Set to Performance
SNC Set to Enabled
IMC Interleaving Set to 1-way Interleave
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on localhost.localdomain Sat Jul 7 20:33:12 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

```plaintext
model name : Intel(R) Xeon(R) Gold 6144 CPU @ 3.50GHz
  2. "physical id"s (chips)
  32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 8
  siblings : 16
  physical 0: cores 0 1 2 3 10 11 24 27
  physical 1: cores 0 4 5 6 16 19 20 22
```

From lscpu:

```plaintext
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6144 CPU @ 3.50GHz
Stepping: 4
```

(Continued on next page)
SPEC CPU2017 Floating Point Rate Result

Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>132</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_fp_peak</td>
<td>135</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Jul-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Platform Notes (Continued)

- **CPU MHz**: 3500.000
- **BogoMIPS**: 7000.00
- **Virtualization**: VT-x
- **L1d cache**: 32K
- **L1i cache**: 32K
- **L2 cache**: 1024K
- **L3 cache**: 25344K
- **NUMA node0 CPU(s)**: 0-2,6,16-18,22
- **NUMA node1 CPU(s)**: 3-5,7,19-21,23
- **NUMA node2 CPU(s)**: 8,9,12,13,24,25,28,29
- **NUMA node3 CPU(s)**: 10,11,14,15,26,27,30,31
- **Flags**: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_pt spec_ctrl ibpb_support tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsaves xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.

- **available**: 4 nodes (0-3)
- **node 0 cpus**: 0 1 2 6 16 17 18 22
- **node 0 size**: 96437 MB
- **node 0 free**: 93275 MB
- **node 1 cpus**: 3 4 5 7 19 20 21 23
- **node 1 size**: 98304 MB
- **node 1 free**: 95354 MB
- **node 2 cpus**: 8 9 12 13 24 25 28 29
- **node 2 size**: 98304 MB
- **node 2 free**: 95395 MB
- **node 3 cpus**: 10 11 14 15 26 27 30 31
- **node 3 size**: 98304 MB
- **node 3 free**: 95187 MB

node distances:

<table>
<thead>
<tr>
<th>node</th>
<th>0 1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>10 11 21 21</td>
</tr>
<tr>
<td>1:</td>
<td>11 10 21 21</td>
</tr>
<tr>
<td>2:</td>
<td>21 21 10 11</td>
</tr>
<tr>
<td>3:</td>
<td>21 21 11 10</td>
</tr>
</tbody>
</table>
Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

From /proc/meminfo
 MemTotal: 394174484 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.4 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"
 VARIANT="Server"
 VARIANT_ID="server"
 VERSION_ID="7.4"
 PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
 redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
 system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
 system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server

uname -a:
 Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jul 5 16:56

SPEC is set to: /spec2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/mapper/rhel-root xfs 1.8T 34G 1.8T 2% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

 BIOS INSYDE Corp. 0.62 03/26/2018
 Memory:
 24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666

(End of data from sysinfo program)

Compiler Version Notes

==
 CC 519.lbm_r(base) 538.imagick_r(base, peak) 544.nab_r(base)
==
 icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

(Continued on next page)
Huawei
Huawei 5288 V5 (Intel Xeon Gold 6144)

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

CPU2017 License: 3175
Test Date: Jul-2018
Test Sponsor: Huawei
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Jan-2018

Compiler Version Notes (Continued)

==
CC 519.lbm_r(peak) 544.nab_r(peak)
==
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==
==
CXXC 508.namd_r(base) 510.parest_r(base)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==
==
CXXC 508.namd_r(peak) 510.parest_r(peak)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==
==
CC 511.povray_r(base) 526.blender_r(base)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
iccc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==
==
CC 511.povray_r(peak) 526.blender_r(peak)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
iccc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==
==
FC 507.cactuBSSN_r(base)
==
icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
iccc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

(Continued on next page)
Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Compiler Version Notes (Continued)

Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

FC 507.cactuBSSN_r(peak)

icpc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

FC 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak) 554.roms_r(base)

ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

FC 554.roms_r(peak)

ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

CC 521.wrf_r(base) 527.cam4_r(base)

ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

CC 521.wrf_r(peak) 527.cam4_r(peak)

ifort (IFORT) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

SPECrate2017_fp_base = 132
SPECrate2017_fp_peak = 135

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jul-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Base Compiler Invocation

C benchmarks:
 icc

C++ benchmarks:
 icpc

Fortran benchmarks:
 ifort

Benchmarks using both Fortran and C:
 ifort icc

Benchmarks using both C and C++:
 icpc icc

Benchmarks using Fortran, C, and C++:
 icpc icc ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
 -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-mem-layout-trans=3

C++ benchmarks:
 -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
SPEC CPU2017 Floating Point Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei

Huawei 5288 V5 (Intel Xeon Gold 6144)

| SPECrate2017_fp_base = 132 |
| SPECrate2017_fp_peak = 135 |

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jul-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Base Optimization Flags (Continued)

C++ benchmarks (continued):
- o -qopt-mem-layout-trans=3

Fortran benchmarks:
- xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-mem-layout-trans=3 -nstandard-realloc-lhs -align array32byte

Benchmarks using both Fortran and C:
- xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-mem-layout-trans=3 -nstandard-realloc-lhs -align array32byte

Benchmarks using both C and C++:
- xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-mem-layout-trans=3

Benchmarks using Fortran, C, and C++:
- xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-mem-layout-trans=3 -nstandard-realloc-lhs -align array32byte

Base Other Flags

C benchmarks:
- m64 -std=c11

C++ benchmarks:
- m64

Fortran benchmarks:
- m64

Benchmarks using both Fortran and C:
- m64 -std=c11

Benchmarks using both C and C++:
- m64 -std=c11

Benchmarks using Fortran, C, and C++:
- m64 -std=c11
Huawei
Huawei 5288 V5 (Intel Xeon Gold 6144)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base = 132</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_fp_peak = 135</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jul-2018
Hardware Availability: Jul-2017
Software Availability: Jan-2018

Peak Compiler Invocation

C benchmarks:
icc

C++ benchmarks:
icpc

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using both C and C++:
icpc icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

519.lbm_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

538.imagick_r: basepeak = yes

544.nab_r: Same as 519.lbm_r

C++ benchmarks:

-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

Fortran benchmarks:

(Continued on next page)
Peak Optimization Flags (Continued)

503.bwaves_r: basepeak = yes

549.fotonik3d_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=3
-nostandard-realloc-lhs -align array32byte

554.roms_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte

Benchmarks using both Fortran and C:
-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte

Benchmarks using both C and C++:
-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

Benchmarks using Fortran, C, and C++:
-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte

Peak Other Flags

C benchmarks:
-m64 -std=c11

C++ benchmarks:
-m64

Fortran benchmarks:
-m64

Benchmarks using both Fortran and C:
-m64 -std=c11

Benchmarks using both C and C++:
-m64 -std=c11

(Continued on next page)
Huawei
Huawei 5288 V5 (Intel Xeon Gold 6144)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base = 132</th>
<th>SPECrate2017_fp_peak = 135</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2017 License: 3175</td>
<td>Test Date: Jul-2018</td>
</tr>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Jan-2018</td>
</tr>
</tbody>
</table>

Peak Other Flags (Continued)

Benchmarks using Fortran, C, and C++:
-m64 -std=c11

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-07-07 20:33:12-0400.
Originally published on 2018-08-07.