SPEC® CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

- **SPECrate2017_int_base** = 201
- **SPECrate2017_int_peak** = 215

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Name: Intel Xeon Gold 6152</td>
<td>OS: Red Hat Enterprise Linux Server release 7.4 (Maipo) 3.10.0-693.11.6.el7.x86_64</td>
</tr>
<tr>
<td>Max MHz.: 3700</td>
<td>Compiler: C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux; Fortran: Version 18.0.0.128 of Intel Fortran Compiler for Linux</td>
</tr>
<tr>
<td>Nominal: 2100</td>
<td>Parallel: No</td>
</tr>
<tr>
<td>Enabled: 44 cores, 2 chips, 2 threads/core</td>
<td>Firmware: Version 0.50 Released Jun-2018</td>
</tr>
<tr>
<td>Orderable: 1.2 chips</td>
<td>File System: xfs</td>
</tr>
<tr>
<td>Cache L1: 32 KB I + 32 KB D on chip per core</td>
<td>System State: Run level 3 (multi-user)</td>
</tr>
<tr>
<td>L2: 1 MB I+D on chip per core</td>
<td>Base Pointers: 64-bit</td>
</tr>
<tr>
<td>L3: 30.25 MB I+D on chip per chip</td>
<td>Peak Pointers: 32/64-bit</td>
</tr>
<tr>
<td>Other: None</td>
<td>Other: jemalloc: jemalloc memory allocator library V5.0.1;</td>
</tr>
<tr>
<td>Memory: 384 GB (12 x 32 GB 2Rx4 PC4-2666V-R)</td>
<td></td>
</tr>
<tr>
<td>Storage: 1 x 2000 GB SATA, 7200 RPM</td>
<td></td>
</tr>
<tr>
<td>Other: None</td>
<td></td>
</tr>
</tbody>
</table>

Test Sponsor: Huawei
Test Date: Jul-2018
Hardware Availability: Sep-2018
Software Availability: Jan-2018

SPECrate2017 Int Results

<table>
<thead>
<tr>
<th>Test Program</th>
<th>Copies</th>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench_r</td>
<td>88</td>
<td>136</td>
<td>193</td>
</tr>
<tr>
<td>gcc_r</td>
<td>88</td>
<td>170</td>
<td>237</td>
</tr>
<tr>
<td>mcf_r</td>
<td>88</td>
<td>125</td>
<td>207</td>
</tr>
<tr>
<td>omnetpp_r</td>
<td>88</td>
<td>186</td>
<td>237</td>
</tr>
<tr>
<td>xalancbmk_r</td>
<td>88</td>
<td>229</td>
<td>423</td>
</tr>
<tr>
<td>x264_r</td>
<td>88</td>
<td>440</td>
<td>440</td>
</tr>
<tr>
<td>deepsjeng_r</td>
<td>88</td>
<td>179</td>
<td>405</td>
</tr>
<tr>
<td>leela_r</td>
<td>88</td>
<td>174</td>
<td>406</td>
</tr>
<tr>
<td>exchange2_r</td>
<td>88</td>
<td>141</td>
<td>405</td>
</tr>
<tr>
<td>xz_r</td>
<td>88</td>
<td>141</td>
<td>406</td>
</tr>
</tbody>
</table>
Huawei
Huawei 2288 V5 (Intel Xeon Gold 6152)

SPECrate2017_int_base = 201
SPECrate2017_int_peak = 215

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>88</td>
<td>907</td>
<td>154</td>
<td>899</td>
<td>156</td>
<td>894</td>
<td>157</td>
<td>88</td>
<td>723</td>
<td>194</td>
<td>729</td>
<td>192</td>
<td>725</td>
<td>193</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>88</td>
<td>731</td>
<td>170</td>
<td>731</td>
<td>171</td>
<td>735</td>
<td>170</td>
<td>88</td>
<td>604</td>
<td>206</td>
<td>603</td>
<td>207</td>
<td>601</td>
<td>207</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>88</td>
<td>581</td>
<td>245</td>
<td>601</td>
<td>237</td>
<td>599</td>
<td>237</td>
<td>88</td>
<td>581</td>
<td>245</td>
<td>601</td>
<td>237</td>
<td>599</td>
<td>237</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>88</td>
<td>923</td>
<td>125</td>
<td>924</td>
<td>125</td>
<td>930</td>
<td>124</td>
<td>88</td>
<td>923</td>
<td>125</td>
<td>924</td>
<td>125</td>
<td>930</td>
<td>124</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>88</td>
<td>496</td>
<td>187</td>
<td>499</td>
<td>186</td>
<td>500</td>
<td>186</td>
<td>88</td>
<td>405</td>
<td>229</td>
<td>405</td>
<td>229</td>
<td>404</td>
<td>230</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>88</td>
<td>363</td>
<td>425</td>
<td>364</td>
<td>423</td>
<td>364</td>
<td>423</td>
<td>88</td>
<td>351</td>
<td>439</td>
<td>350</td>
<td>440</td>
<td>350</td>
<td>441</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>88</td>
<td>550</td>
<td>184</td>
<td>564</td>
<td>179</td>
<td>566</td>
<td>178</td>
<td>88</td>
<td>550</td>
<td>184</td>
<td>564</td>
<td>179</td>
<td>566</td>
<td>178</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>88</td>
<td>832</td>
<td>175</td>
<td>840</td>
<td>173</td>
<td>838</td>
<td>174</td>
<td>88</td>
<td>811</td>
<td>180</td>
<td>844</td>
<td>173</td>
<td>827</td>
<td>176</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>88</td>
<td>567</td>
<td>407</td>
<td>570</td>
<td>404</td>
<td>569</td>
<td>405</td>
<td>88</td>
<td>569</td>
<td>405</td>
<td>567</td>
<td>406</td>
<td>568</td>
<td>406</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>88</td>
<td>620</td>
<td>153</td>
<td>674</td>
<td>141</td>
<td>674</td>
<td>141</td>
<td>88</td>
<td>675</td>
<td>141</td>
<td>675</td>
<td>141</td>
<td>673</td>
<td>141</td>
</tr>
</tbody>
</table>

SPECrate2017_int_base = 201
SPECrate2017_int_peak = 215

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM memory using Redhat Enterprise Linux 7.4
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3>/proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
jemalloc: configured and built at default for
32bit (i686) and 64bit (x86_64) targets;
jemalloc: built with the RedHat Enterprise 7.4,
and the system compiler gcc 4.8.5;
jemalloc: sources available from jemalloc.net or
SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

SPECrate2017_int_base = 201

SPECrate2017_int_peak = 215

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jul-2018
Hardware Availability: Sep-2018
Software Availability: Jan-2018

General Notes (Continued)

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
Power Policy Set to Performance
SNC Set to Enabled
IMC Interleaving Set to 1-way Interleave
XPT Prefetch Set to Enabled
ADDDC Sparing Set to Disabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bccc091c0f
running on localhost.localdomain Tue Jul 10 08:33:08 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
 model name : Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz
 2 "physical id"s (chips)
 88 "processors"
 cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 22
 siblings : 44
 physical 0: cores 0 1 2 3 4 5 8 9 10 11 12 16 17 18 19 20 21 24 25 26 27 28
 physical 1: cores 0 1 2 3 4 5 8 9 10 11 12 16 17 18 19 20 21 24 25 26 27 28

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian
 CPU(s): 88
 On-line CPU(s) list: 0-87
 Thread(s) per core: 2
 Core(s) per socket: 22
 Socket(s): 2
 NUMA node(s): 4
 Vendor ID: GenuineIntel

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>215</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Hardware Availability: Sep-2018
Software Availability: Jan-2018

Platform Notes (Continued)

```
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz
Stepping: 4
CPU MHz: 2100.000
BogoMIPS: 4200.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 30976K
NUMA node0 CPU(s): 0-2, 6-8, 11-13, 17, 18, 44-46, 50-52, 55-57, 61, 62
NUMA node1 CPU(s): 3-5, 9, 10-14, 16-19, 21-49, 53, 54, 58-60, 63-65
NUMA node2 CPU(s): 22-24, 28-30, 33-35, 39, 40, 66-68, 72-74, 77-79, 83, 84
NUMA node3 CPU(s): 25-27, 31, 32, 36-38, 41-43, 69-71, 75, 76, 80-82, 85-87
```

```
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtsdp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 ms_cpl vmx smx est tm2 ssse3 fma cx16 xtpcr
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx
fi64c rdrand lahf_lm abr xpm avx512f avx512dq rdseed adx smap clflushopt clwb avx512fd cvx
```

```
From numactl --hardware
```

``` text
WARNING: a numactl 'node' might or might not correspond to a physical chip.
```

Available node configurations:

<table>
<thead>
<tr>
<th>Node</th>
<th>CPUs</th>
<th>Size</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>96437 MB</td>
<td>93836 MB</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>98304 MB</td>
<td>95929 MB</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>98304 MB</td>
<td>95281 MB</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>98304 MB</td>
<td>95984 MB</td>
</tr>
</tbody>
</table>

```

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

SPECrate2017_int_base = 201
SPECrate2017_int_peak = 215

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jul-2018
Tested by: Huawei
Hardware Availability: Sep-2018
Software Availability: Jan-2018

Platform Notes (Continued)

From /proc/meminfo
MemTotal: 394174376 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
NAME="Red Hat Enterprise Linux Server"
VERSION="7.4 (Maipo)"
ID=rhel
ID_LIKE="fedora"
VARIANT="Server"
VARIANT_ID="server"
VERSION_ID="7.4"
PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server

uname -a:
Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jul 10 08:31

SPEC is set to: /spec2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda3 xfs 734G 78G 656G 11% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 0.50 06/25/2018
Memory:
4x NO DIMM NO DIMM
12x Samsung M393A4K40BB2-CTD 32 GB 2 rank 2666

(End of data from sysinfo program)
Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

SPECrate2017_int_base = 201

SPECrate2017_int_peak = 215

CPU2017 License: 3175
Test Sponsor: Huawei
Hardware Availability: Sep-2018
Test Date: Jul-2018
Software Availability: Jan-2018
Tested by: Huawei

Compiler Version Notes

==============================================================================
CC  500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak)  
   525.x264_r(base, peak) 557.xz_r(base, peak)  
  icc (ICC) 18.0.0 20170811
  Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==============================================================================
CC  500.perlbench_r(peak) 502.gcc_r(peak)
  icc (ICC) 18.0.0 20170811
  Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==============================================================================
CXXC 520.omnetpp_r(base) 523.xalancbmk_r(base) 531.deepsjeng_r(base)  
  541.leela_r(base)  
  icpc (ICC) 18.0.0 20170811
  Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==============================================================================
CXXC 520.omnetpp_r(peak) 523.xalancbmk_r(peak) 531.deepsjeng_r(peak)  
  541.leela_r(peak)  
  icpc (ICC) 18.0.0 20170811
  Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==============================================================================
FC  548.exchange2_r(base, peak)  
  ifort (IFORT) 18.0.0 20170811
  Copyright (C) 1985-2017 Intel Corporation. All rights reserved.
==============================================================================

Base Compiler Invocation

C benchmarks:
  icc

C++ benchmarks:
  icpc

(Continued on next page)
### SPEC CPU2017 Integer Rate Result

**Huawei**

**Huawei 2288 V5 (Intel Xeon Gold 6152)**

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>215</td>
</tr>
</tbody>
</table>

**CPU2017 License:** 3175  
**Test Sponsor:** Huawei  
**Test Date:** Jul-2018  
**Hardware Availability:** Sep-2018  
**Tested by:** Huawei  
**Software Availability:** Jan-2018

#### Base Compiler Invocation (Continued)

Fortran benchmarks:

```fortran
ifort
```

### Base Portability Flags

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlibench_r</td>
<td>-DSPEC_LP64 -DSPEC_LINUX_X64</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>-DSPEC_LP64 -DSPEC_LINUX</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>-DSPEC_LP64</td>
</tr>
</tbody>
</table>

### Base Optimization Flags

**C benchmarks:**

```text
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc
```

**C++ benchmarks:**

```text
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc
```

**Fortran benchmarks:**

```text
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte
-L/usr/local/je5.0.1-64/lib -ljemalloc
```

### Base Other Flags

**C benchmarks:**

```text
-m64 -std=c11
```

**C++ benchmarks:**

```text
-m64
```

(Continued on next page)
SPEC CPU2017 Integer Rate Result
Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei
Huawei 2288 V5 (Intel Xeon Gold 6152)

| SPECrate2017_int_base = 201 |
| SPECrate2017_int_peak = 215 |

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jul-2018
Hardware Availability: Sep-2018
Software Availability: Jan-2018

Base Other Flags (Continued)

Fortran benchmarks:
- m64

Peak Compiler Invocation

C benchmarks:
icc
C++ benchmarks:
icpc

Fortran benchmarks:
ifort

Peak Portability Flags

- 500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
- 502.gcc_r: -D_FILE_OFFSET_BITS=64
- 505.mcf_r: -DSPEC_LP64
- 520.omnetpp_r: -DSPEC_LP64
- 523.xalancbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX
- 525.x264_r: -DSPEC_LP64
- 531.deepsjeng_r: -DSPEC_LP64
- 541.leela_r: -DSPEC_LP64
- 548.exchange2_r: -DSPEC_LP64
- 557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:
- 500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
  -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
  -fno-strict-overflow -L/usr/local/je5.0.1-64/lib
  -ljemalloc
- 502.gcc_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32
  -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
  -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
  -L/usr/local/je5.0.1-32/lib -ljemalloc

(Continued on next page)
Peak Optimization Flags (Continued)

505.mcf_r: basepeak = yes

525.x264_r: -Wl,-z,mulde -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -fno-alias -L/usr/local/je5.0.1-64/lib -ljemalloc

557.xz_r: -Wl,-z,mulde -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -L/opt/intel/compilers_and_libraries_2018/linux/lib/ia32 -Wl,-z,mulde -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: basepeak = yes

541.leela_r: -Wl,-z,mulde -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
- Wl,-z,mulde -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte -L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Other Flags

C benchmarks (except as noted below):
- m64 -std=c11

502.gcc_r: -m32 -std=c11

C++ benchmarks (except as noted below):
- m64

523.xalancbmk_r: -m32

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Gold 6152)

SPECrate2017_int_base = 201
SPECrate2017_int_peak = 215

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jul-2018
Hardware Availability: Sep-2018
Software Availability: Jan-2018

Peak Other Flags (Continued)

Fortran benchmarks:
- -m64

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-07-09 20:33:07-0400.
Originally published on 2018-08-22.