Huawei CH225 V5 (Intel Xeon Gold 6138)

SPEC® CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Gold 6138
- **Max MHz.:** 3700
- **Nominal:** 2000
- **Enabled:** 40 cores, 2 chips, 2 threads/core
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 1 MB I+D on chip per core
- **L3:** 27.5 MB I+D on chip per chip
- **Memory:** 768 GB (24 x 32 GB 2Rx4 PC4-2666V-R)
- **Storage:** 1 x 1200 GB SAS, 10000 RPM
- **Other:** None

Software

- **OS:** Red Hat Enterprise Linux Server release 7.4 (Maipo)
 3.10.0-693.11.6.el7.x86_64
- **Compiler:** C/C++: Version 18.0.2.199 of Intel C/C++ Compiler for Linux;
 Fortran: Version 18.0.2.199 of Intel Fortran Compiler for Linux
- **Parallel:** No
- **Firmware:** Version 0.80 Released Jun-2018
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 32/64-bit
- **Other:** jemalloc memory allocator V5.0.1
Huawei

Huawei CH225 V5 (Intel Xeon Gold 6138)

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>80</td>
<td>937</td>
<td>136</td>
<td>929</td>
<td>137</td>
<td>925</td>
<td>138</td>
<td>80</td>
<td>746</td>
<td>171</td>
<td>749</td>
<td>170</td>
<td>754</td>
<td>169</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>80</td>
<td>721</td>
<td>157</td>
<td>720</td>
<td>157</td>
<td>719</td>
<td>158</td>
<td>80</td>
<td>604</td>
<td>187</td>
<td>605</td>
<td>187</td>
<td>606</td>
<td>187</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>80</td>
<td>580</td>
<td>223</td>
<td>594</td>
<td>218</td>
<td>583</td>
<td>222</td>
<td>80</td>
<td>580</td>
<td>223</td>
<td>594</td>
<td>218</td>
<td>583</td>
<td>222</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>80</td>
<td>845</td>
<td>124</td>
<td>847</td>
<td>124</td>
<td>859</td>
<td>122</td>
<td>80</td>
<td>845</td>
<td>124</td>
<td>847</td>
<td>124</td>
<td>859</td>
<td>122</td>
</tr>
<tr>
<td>523.xalanbmk_r</td>
<td>80</td>
<td>495</td>
<td>171</td>
<td>490</td>
<td>172</td>
<td>493</td>
<td>171</td>
<td>80</td>
<td>402</td>
<td>210</td>
<td>401</td>
<td>211</td>
<td>400</td>
<td>211</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>80</td>
<td>382</td>
<td>366</td>
<td>382</td>
<td>367</td>
<td>384</td>
<td>365</td>
<td>80</td>
<td>382</td>
<td>366</td>
<td>382</td>
<td>367</td>
<td>384</td>
<td>365</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>80</td>
<td>594</td>
<td>154</td>
<td>595</td>
<td>154</td>
<td>592</td>
<td>155</td>
<td>80</td>
<td>594</td>
<td>154</td>
<td>597</td>
<td>153</td>
<td>588</td>
<td>156</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>80</td>
<td>877</td>
<td>151</td>
<td>874</td>
<td>152</td>
<td>876</td>
<td>151</td>
<td>80</td>
<td>844</td>
<td>157</td>
<td>868</td>
<td>153</td>
<td>872</td>
<td>152</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>80</td>
<td>601</td>
<td>349</td>
<td>602</td>
<td>348</td>
<td>602</td>
<td>348</td>
<td>80</td>
<td>601</td>
<td>349</td>
<td>602</td>
<td>348</td>
<td>602</td>
<td>348</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>80</td>
<td>630</td>
<td>137</td>
<td>630</td>
<td>137</td>
<td>630</td>
<td>137</td>
<td>80</td>
<td>630</td>
<td>137</td>
<td>630</td>
<td>137</td>
<td>630</td>
<td>137</td>
</tr>
</tbody>
</table>

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/spec2017-18.2/lib/ia32:/spec2017-18.2/lib/intel64:
/spec2017-18.2/je5.0.1-32:/spec2017-18.2/je5.0.1-64"

Binaries compiled on a system with 1x Intel Core i7-6700K CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5

Transparent Huge Pages enabled by default
Prior to runcpu invocation
Files system page cache synced and cleared with:
sync; echo 3>/proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

(Continued on next page)
Huawei CH225 V5 (Intel Xeon Gold 6138)

SPEC CPU2017 Integer Rate Result

Huawei

Huawei CH225 V5 (Intel Xeon Gold 6138) SPECrate2017_int_base = 183

SPECrate2017_int_peak = 194

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Aug-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Mar-2018

General Notes (Continued)

is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

BIOS configuration:
Power Policy Set to Performance
SNC Set to Enabled
IMC Interleaving Set to 1-way Interleave
XPT Prefetch Set to Enabled
.Sysinfo program /spec2017-18.2/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on localhost.localdomain Sun Aug 5 15:48:31 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
 2 "physical id"s (chips)
 80 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 20
siblings : 40
physical 0: cores 0 1 2 3 4 8 9 10 11 12 16 17 18 19 20 24 25 26 27 28
physical 1: cores 0 1 2 3 4 8 9 10 11 12 16 17 18 19 20 24 25 26 27 28

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 80
On-line CPU(s) list: 0-79
Thread(s) per core: 2
Core(s) per socket: 20
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
Stepping: 4

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei CH225 V5 (Intel Xeon Gold 6138)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>183</td>
<td>194</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Aug-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Platform Notes (Continued)

```plaintext
CPU MHz: 2000.000  
BogoMIPS: 4000.00  
Virtualization: VT-x  
L1d cache: 32K  
L1i cache: 32K  
L2 cache: 1024K  
L3 cache: 28160K  
NUMA node0 CPU(s): 0-2,5,6,10-12,15,16,40-42,45,46,50-52,55,56  
NUMA node1 CPU(s): 3,4,7-9,13,14,17-19,43,44,47-49,53,54,57-59  
NUMA node2 CPU(s): 20-22,25,26,30-32,35,36,60-62,65,66,70-72,75,76  
NUMA node3 CPU(s): 23,24,27-29,33,34,37-39,63,64,67-69,73,74,77-79  
Flags: fpu vme de pse sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu nni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_pt spec_ctrl ibpb_support tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2  
From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.  
available: 4 nodes (0-3)  
node 0 cpus: 0 1 2 5 6 10 11 12 15 16 40 41 42 45 46 50 51 52 55 56  
node 0 size: 194741 MB  
node 0 free: 190038 MB  
node 1 cpus: 3 4 7 8 9 13 14 17 18 19 43 44 47 48 49 53 54 57 58 59  
node 1 size: 196608 MB  
node 1 free: 191801 MB  
node 2 cpus: 20 21 22 25 26 30 31 32 35 36 60 61 62 65 66 70 71 72 75 76  
node 2 size: 196608 MB  
node 2 free: 192129 MB  
node 3 cpus: 23 24 27 28 29 33 34 37 38 39 63 64 67 68 69 73 74 77 78 79  
node 3 size: 196608 MB  
node 3 free: 192161 MB  
node distances:  
/node 0 1 2 3  
0: 11 10 21 21  
1: 11 10 21 21  
2: 21 21 10 11  
3: 21 21 11 10
```

(Continued on next page)
Huawei

Huawei CH225 V5 (Intel Xeon Gold 6138)

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

From /proc/meminfo
 MemTotal: 790510360 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.4 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"
 VARIANT="Server"
 VARIANT_ID="server"
 VERSION_ID="7.4"
 PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
 redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
 system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
 system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server

uname -a:
 Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Aug 5 15:31

SPEC is set to: /spec2017-18.2
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda2 xfs 720G 55G 666G 8% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

 BIOS INSYDE Corp. 0.80 06/27/2018
 Memory:
 24x Samsung M393A4K40BB2-CTD 32 GB 2 rank 2666

(End of data from sysinfo program)

Compiler Version Notes

==
 CC 500.perlibench_r(base) 502.gcc_r(base) 505.mcf_r(base) 525.x264_r(base)
 557.xz_r(base)
==
 icc (ICC) 18.0.2 20180210

(Continued on next page)
Huawei
Huawei CH225 V5 (Intel Xeon Gold 6138)

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Aug-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Compiler Version Notes (Continued)

```
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

```
CC  500.perlbench_r(peak) 502.gcc_r(peak) 505.mcf_r(peak) 525.x264_r(peak)
      557.xz_r(peak)

icc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

```
CXXC 520.omnetpp_r(base) 523.xalancbmk_r(base) 531.deepsjeng_r(base)
      541.leela_r(base)

icpc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

```
CXXC 520.omnetpp_r(peak) 523.xalancbmk_r(peak) 531.deepsjeng_r(peak)
      541.leela_r(peak)

icpc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

```
FC  548.exchange2_r(base)

ifort (IFORT) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

```
FC  548.exchange2_r(peak)

ifort (IFORT) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
```

Base Compiler Invocation

```
C benchmarks:
  icc -m64 -std=c11
```

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei CH225 V5 (Intel Xeon Gold 6138)

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Aug-2018
Hardware Availability: Jul-2017

Tested by: Huawei
Software Availability: Mar-2018

Base Compiler Invocation (Continued)

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs
-L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m64 -std=c11

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei CH225 V5 (Intel Xeon Gold 6138)

<table>
<thead>
<tr>
<th>Specrate2017_int_base</th>
<th>183</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specrate2017_int_peak</td>
<td>194</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Hardware Availability: Jul-2017
Test Date: Aug-2018
Tested by: Huawei
Software Availability: Mar-2018

Peak Compiler Invocation (Continued)

502.gcc_r:icc -m32 -std=c11 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin

C++ benchmarks (except as noted below):

icpc -m64

523.xalancbmk_r.icpc -m32 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin

Fortran benchmarks:

ifort -m64

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalanchbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
-fno-strict-overflow -L/usr/local/je5.0.1-64/lib
-ljemalloc

502.gcc_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -ljemalloc

505.mcf_r: basepeak = yes
525.x264_r: basepeak = yes
557.xz_r: basepeak = yes

(Continued on next page)
Huawei
Huawei CH225 V5 (Intel Xeon Gold 6138)

SPECrate2017_int_base = 183
SPECrate2017_int_peak = 194

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Aug-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Peak Optimization Flags (Continued)

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-64/lib -ljemalloc

541.leela_r: Same as 531.deepsjeng_r

Fortran benchmarks:

548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.2017-12-21.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-08-05 15:48:30-0400.
Originally published on 2018-09-04.