Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.4</td>
<td>35.1</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Copies

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench</td>
<td>12</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td>gcc</td>
<td>12</td>
<td></td>
<td>36.6</td>
</tr>
<tr>
<td>mcf</td>
<td>12</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>omnetpp</td>
<td>12</td>
<td>39.6</td>
<td>55.3</td>
</tr>
<tr>
<td>xalancbmk</td>
<td>12</td>
<td>35.9</td>
<td></td>
</tr>
<tr>
<td>x264</td>
<td>12</td>
<td></td>
<td>60.2</td>
</tr>
<tr>
<td>deepsjeng</td>
<td>12</td>
<td>29.3</td>
<td></td>
</tr>
<tr>
<td>leela</td>
<td>12</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>exchange2</td>
<td>12</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>xz</td>
<td>12</td>
<td>22.5</td>
<td></td>
</tr>
</tbody>
</table>

Hardware

CPU Name: Intel Xeon Bronze 3104
Max MHz.: 1700
Nominal: 1700
Enabled: 12 cores, 2 chips
Orderable: 1.2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 8.25 MB I+D on chip per chip
Other: None
Memory: 768 GB (24 x 32 GB 2Rx4 PC4-2666V-R, running at 2133)
Storage: 1 x 1200 GB SAS, 10000 RPM
Other: None

Software

OS: Red Hat Enterprise Linux Server release 7.4 (Maipo)
Compiler: C/C++: Version 18.0.2.199 of Intel C/C++
Compiler for Linux: Fortran: Version 18.0.2.199 of Intel Fortran
Compiler for Linux
Parallel: No
Firmware: Version 0.80 Released Jun-2018
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc memory allocator V5.0.1
Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>12</td>
<td>682</td>
<td>28.0</td>
<td>684</td>
<td>27.9</td>
<td>682</td>
<td>28.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>12</td>
<td>526</td>
<td>32.3</td>
<td>527</td>
<td>32.2</td>
<td>527</td>
<td>32.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>12</td>
<td>499</td>
<td>38.9</td>
<td>499</td>
<td>38.9</td>
<td>499</td>
<td>38.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>12</td>
<td>633</td>
<td>24.9</td>
<td>627</td>
<td>25.1</td>
<td>630</td>
<td>25.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>12</td>
<td>354</td>
<td>35.8</td>
<td>353</td>
<td>35.9</td>
<td>352</td>
<td>36.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525.x264_r</td>
<td>12</td>
<td>379</td>
<td>55.4</td>
<td>381</td>
<td>55.2</td>
<td>380</td>
<td>55.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>12</td>
<td>469</td>
<td>29.3</td>
<td>469</td>
<td>29.3</td>
<td>469</td>
<td>29.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541.leela_r</td>
<td>12</td>
<td>864</td>
<td>23.0</td>
<td>867</td>
<td>22.9</td>
<td>865</td>
<td>23.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>12</td>
<td>480</td>
<td>65.5</td>
<td>485</td>
<td>64.8</td>
<td>478</td>
<td>65.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>557.xz_r</td>
<td>12</td>
<td>575</td>
<td>22.5</td>
<td>575</td>
<td>22.5</td>
<td>575</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

```
```

Binaries compiled on a system with 1x Intel Core i7-6700K CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5

Transparent Huge Pages enabled by default

Prior to runcpu invocation

```
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>
```

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)

(Continued on next page)
Huawei CH225 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Sep-2018</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Jul-2017</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Mar-2018</td>
</tr>
</tbody>
</table>

SPEC CPU2017 Integer Rate Result

Huawei

SPECrate2017_int_base = 33.4

SPECrate2017_int_peak = 35.1

General Notes (Continued)

is mitigated in the system as tested and documented.

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

BIOS configuration:
Power Policy Set to Performance
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on localhost.localdomain Sun Sep 16 16:20:59 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
 2 "physical id"s (chips)
 12 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 6
siblings : 6
physical 0: cores 0 1 2 3 4 5
physical 1: cores 0 1 2 3 4 5

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
Stepping: 4
CPU MHz: 1700.000
BogoMIPS: 3400.00

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei CH225 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.4</td>
<td>35.1</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Platform Notes (Continued)

<table>
<thead>
<tr>
<th>Virtualization:</th>
<th>VT-x</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1d cache:</td>
<td>32K</td>
</tr>
<tr>
<td>L1i cache:</td>
<td>32K</td>
</tr>
<tr>
<td>L2 cache:</td>
<td>1024K</td>
</tr>
<tr>
<td>L3 cache:</td>
<td>8448K</td>
</tr>
<tr>
<td>NUMA node0 CPU(s):</td>
<td>0-5</td>
</tr>
<tr>
<td>NUMA node1 CPU(s):</td>
<td>6-11</td>
</tr>
</tbody>
</table>

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant-tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_pt spec_ctrl ibpb_support tpr_shadow vnumi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 emm invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsave vfp16vsc xsavec xgetbv1 cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local dtherm arat pln pts

/proc/cpuinfo cache data

- cache size : 8448 KB

From numactl --hardware

- WARNING: a numactl 'node' might or might not correspond to a physical chip.
- available: 2 nodes (0-1)
- node 0 cpus: 0 1 2 3 4 5
- node 0 size: 391349 MB
- node 0 free: 382101 MB
- node 1 cpus: 6 7 8 9 10 11
- node 1 size: 393216 MB
- node 1 free: 381395 MB
- node distances:
- node 0 1
- 0: 10 21
- 1: 21 10

From /proc/meminfo

- MemTotal: 790510872 kB
- HugePages_Total: 0
- Hugepagesize: 2048 kB

From /etc/*release*/etc/*version*

- os-release:
 - NAME="Red Hat Enterprise Linux Server"
 - VERSION="7.4 (Maipo)"
 - ID=rhel
 - ID_LIKE="fedora"
 - VARIANT="Server"

(Continued on next page)
Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

SPECrate2017_int_base = 33.4
SPECrate2017_int_peak = 35.1

Platform Notes (Continued)

VARIANT_ID="server"
VERSION_ID="7.4"
PRETTY_NAME="Red Hat Enterprise Linux Server 7.4 (Maipo)"
redhat-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.4 (Maipo)
system-release-cpe: cpe:/o:redhat:enterprise_linux:7.4:ga:server

uname -a:
Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Sep 16 16:16

SPEC is set to: /spec2017

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/sda2</td>
<td>xfs</td>
<td>720G</td>
<td>90G</td>
<td>631G</td>
<td>13%</td>
<td>/</td>
</tr>
</tbody>
</table>

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 0.80 06/27/2018
Memory:
24x Samsung M393A4K40BB2-CTD 32 GB 2 rank 2666, configured at 2133

(End of data from sysinfo program)

Compiler Version Notes

CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base) 525.x264_r(base) 557.xz_r(base)
crate 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 500.perlbench_r(peak) 502.gcc_r(peak) 505.mcf_r(peak) 525.x264_r(peak) 557.xz_r(peak)
crate 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

(Continued on next page)
Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

SPECrate2017_int_base = 33.4
SPECrate2017_int_peak = 35.1

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Compiler Version Notes (Continued)

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Base Compiler Invocation

Fortran benchmarks:
ifort -m64

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei
Huawei CH225 V5 (Intel Xeon Bronze 3104)

SPECrate2017_int_base = 33.4
SPECrate2017_int_peak = 35.1

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Base Portability Flags (Continued)

502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

C++ benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc

Fortran benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs
-L/usr/local/je5.0.1-64/lib -ljemalloc

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m64 -std=c11

502.gcc_r.icc -m32 -std=c11 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin

C++ benchmarks (except as noted below):
icpc -m64

523.xalancbmk_r.icpc -m32 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin

Fortran benchmarks:
ifort -m64
Peak Portability Flags

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>-DSPEC_LP64 -DSPEC_LINUX_X64</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>-D_FILE_OFFSET_BITS=64</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>-D_FILE_OFFSET_BITS=64 -DSPEC_LINUX</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>basepeak = yes</td>
</tr>
</tbody>
</table>

Peak Optimization Flags

C benchmarks:

```
500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-fno-strict-overflow -L/usr/local/je5.0.1-64/lib
-ljemalloc

502.gcc_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -ljemalloc

505.mcf_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-64/lib -ljemalloc

520.omnetpp_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-64/lib -ljemalloc

523.xalancbmk_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -ljemalloc
```

C++ benchmarks:

```
520.omnetpp_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-64/lib -ljemalloc

523.xalancbmk_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-L/usr/local/je5.0.1-32/lib -ljemalloc
```

(Continued on next page)
Huawei

Huawei CH225 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base = 33.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak = 35.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Sep-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Mar-2018</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

- 531.deepsjeng_r: basepeak = yes
- 541.leela_r: Same as 520.omnetpp_r

Fortran benchmarks:
- 548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links:

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2018-09-16 16:20:58-0400.
Report generated on 2018-10-31 19:03:36 by CPU2017 PDF formatter v6067.
Originally published on 2018-10-16.