Huawei

Huawei CH225 V5 (Intel Xeon Gold 5118)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>128</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Date: Sep-2018
Test Sponsor: Huawei
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Mar-2018

Hardware

CPU Name: Intel Xeon Gold 5118
Max MHz.: 3200
Nominal: 2300
Enabled: 24 cores, 2 chips, 2 threads/core
Orderable: 1,2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 16.5 MB I+D on chip per chip
Other: None
Memory: 384 GB (24 x 16 GB 2Rx8 PC4-2666V-R, running at 2400)
Storage: 1 x 1200 GB SAS, 10000 RPM
Other: None

Software

OS: Red Hat Enterprise Linux Server release 7.3 (Maipo)
Compiler: C/C++: Version 18.0.2.199 of Intel C/C++ Compiler for Linux;
Compiler for Linux:
Fortran: Version 18.0.2.199 of Intel Fortran Compiler for Linux
Parallel: No
Firmware: Version 0.80 Released Jun-2018
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc memory allocator V5.0.1
Huawei

Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121
SPECrate2017_int_peak = 128

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>48</td>
<td>828</td>
<td>92.3</td>
<td>819</td>
<td>93.3</td>
<td>827</td>
<td>92.4</td>
<td>48</td>
<td>671</td>
<td>114</td>
<td>678</td>
<td>113</td>
<td>678</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>48</td>
<td>643</td>
<td>106</td>
<td>643</td>
<td>106</td>
<td>645</td>
<td>105</td>
<td>48</td>
<td>544</td>
<td>125</td>
<td>548</td>
<td>124</td>
<td>547</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>48</td>
<td>506</td>
<td>153</td>
<td>521</td>
<td>149</td>
<td>524</td>
<td>148</td>
<td>48</td>
<td>506</td>
<td>153</td>
<td>521</td>
<td>149</td>
<td>524</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>48</td>
<td>777</td>
<td>81.1</td>
<td>774</td>
<td>81.4</td>
<td>775</td>
<td>81.3</td>
<td>48</td>
<td>777</td>
<td>81.1</td>
<td>774</td>
<td>81.4</td>
<td>775</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>48</td>
<td>422</td>
<td>120</td>
<td>419</td>
<td>121</td>
<td>416</td>
<td>122</td>
<td>48</td>
<td>344</td>
<td>147</td>
<td>345</td>
<td>147</td>
<td>343</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>48</td>
<td>390</td>
<td>216</td>
<td>390</td>
<td>215</td>
<td>389</td>
<td>216</td>
<td>48</td>
<td>370</td>
<td>227</td>
<td>370</td>
<td>227</td>
<td>371</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>48</td>
<td>829</td>
<td>95.9</td>
<td>825</td>
<td>96.3</td>
<td>829</td>
<td>95.9</td>
<td>48</td>
<td>816</td>
<td>97.4</td>
<td>823</td>
<td>96.6</td>
<td>822</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>48</td>
<td>562</td>
<td>224</td>
<td>560</td>
<td>225</td>
<td>561</td>
<td>224</td>
<td>48</td>
<td>562</td>
<td>224</td>
<td>560</td>
<td>225</td>
<td>561</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>48</td>
<td>567</td>
<td>91.5</td>
<td>565</td>
<td>91.8</td>
<td>604</td>
<td>85.8</td>
<td>48</td>
<td>567</td>
<td>91.5</td>
<td>565</td>
<td>91.8</td>
<td>604</td>
</tr>
</tbody>
</table>

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

Binaries compiled on a system with 1x Intel Core i7-6700K CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
umactl --interleave=all runcpu <etc>
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

(Continued on next page)
Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121
SPECrate2017_int_peak = 128

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

General Notes (Continued)
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

BIOS configuration:
Power Policy Set to Performance
SNC Set to Enabled
IMC Interleaving Set to 1-way Interleave
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on localhost.localdomain Mon Sep 17 05:57:20 2018

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
 2 "physical id"s (chips)
 48 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 12
siblings : 24
physical 0: cores 0 1 2 3 4 5 8 9 10 11 12 13
physical 1: cores 0 1 2 3 4 5 8 9 10 11 12 13

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz
Stepping: 4
CPU MHz: 2300.000

(Continued on next page)
Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121
SPECrate2017_int_peak = 128

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Sep-2018
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Mar-2018

Platform Notes (Continued)

 BogoMIPS: 4604.61
 Virtualization: VT-x
 L1d cache: 32K
 L1i cache: 32K
 L2 cache: 1024K
 L3 cache: 16896K
 NUMA node0 CPU(s): 0-2,6-8,24-26,30-32
 NUMA node1 CPU(s): 3-5,9-11,27-29,33-35
 NUMA node2 CPU(s): 12-14,18-20,36-38,42-44
 NUMA node3 CPU(s): 15-17,21-23,39-41,45-47

/proc/cpuinfo cache data
 cache size : 16896 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
 available: 4 nodes (0-3)
 node 0 cpus: 0 1 2 6 7 8 24 25 26 30 31 32
 node 0 size: 96433 MB
 node 0 free: 93818 MB
 node 1 cpus: 3 4 5 9 10 11 27 28 29 33 34 35
 node 1 size: 98304 MB
 node 1 free: 95967 MB
 node 2 cpus: 12 13 14 18 19 20 36 37 38 42 43 44
 node 2 size: 98304 MB
 node 2 free: 96051 MB
 node 3 cpus: 15 16 17 21 22 23 39 40 41 45 46 47
 node 3 size: 98304 MB
 node 3 free: 95684 MB
 node distances:
 node 0 1 2 3
 0: 10 11 21 21
 1: 11 10 21 21
 2: 21 21 10 11
 3: 21 21 11 10

From /proc/meminfo
 MemTotal: 394168844 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="Red Hat Enterprise Linux Server"
 VERSION="7.3 (Maipo)"
 ID="rhel"
 ID_LIKE="fedora"

(Continued on next page)
Huawei

Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrerate2017_int_base = 121
SPECrerate2017_int_peak = 128

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Platform Notes (Continued)

VERSION_ID="7.3"
PRETTY_NAME="Red Hat Enterprise Linux Server 7.3 (Maipo)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:7.3:GA:server"
redhat-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)

uname -a:
Linux localhost.localdomain 3.10.0-693.11.6.el7.x86_64 #1 SMP Thu Dec 28 14:23:39 EST 2017 x86_64 x86_64 x86_64 GNU/Linux
run-level 3 Sep 17 05:56
SPEC is set to: /spec2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda4 xfs 400G 8.2G 392G 3% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 0.80 06/27/2018
Memory:
24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666, configured at 2400

(End of data from sysinfo program)

Compiler Version Notes

==
CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base) 525.x264_r(base) 557.xz_r(base)
==
icc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
==

==
CC 500.perlbench_r(peak) 502.gcc_r(peak) 505.mcf_r(peak) 525.x264_r(peak) 557.xz_r(peak)
==
icc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

(Continued on next page)
Huawei
Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121
SPECrate2017_int_peak = 128

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Compiler Version Notes (Continued)

==
CXXC 520.omnetpp_r(base) 523.xalanchmk_r(base) 531.deepsjeng_r(base)
541.leela_r(base)
==
icpc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
==
CXXC 520.omnetpp_r(peak) 523.xalanchmk_r(peak) 531.deepsjeng_r(peak)
541.leela_r(peak)
==
icpc (ICC) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
==
FC 548.exchange2_r(base)
==
ifort (IFORT) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
==
FC 548.exchange2_r(peak)
==
ifort (IFORT) 18.0.2 20180210
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64
SPEC CPU2017 Integer Rate Result

Huawei

Huawei CH225 V5 (Intel Xeon Gold 5118)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>121</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>128</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Sep-2018
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Base Portability Flags

- 500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
- 502.gcc_r: -DSPEC_LP64
- 505.mcf_r: -DSPEC_LP64
- 520.omnetpp_r: -DSPEC_LP64
- 523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
- 525.x264_r: -DSPEC_LP64
- 531.deepsjeng_r: -DSPEC_LP64
- 541.leela_r: -DSPEC_LP64
- 548.exchange2_r: -DSPEC_LP64
- 557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:

- `-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div`
- `-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc`

C++ benchmarks:

- `-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div`
- `-qopt-mem-layout-trans=3 -L/usr/local/je5.0.1-64/lib -ljemalloc`

Fortran benchmarks:

- `-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div`
- `-qopt-mem-layout-trans=3 -nostandard-realloc-lhs`
- `-L/usr/local/je5.0.1-64/lib -ljemalloc`

Peak Compiler Invocation

C benchmarks (except as noted below):

- `icc -m64 -std=c11`

- `502.gcc_r.icc -m32 -std=c11 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin`

C++ benchmarks (except as noted below):

- `icpc -m64`

- `523.xalancbmk_r.icpc -m32 -L/home/prasadj/specdev/IC18u2_Internal/lin_18_0_20180210/compiler/lib/ia32_lin`

Fortran benchmarks:

- `ifort -m64`
Huawei
Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121
SPECrate2017_int_peak = 128

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Sep-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Mar-2018

Peak Portability Flags

-DSPEC_LP64
-DSPEC_LINUX_X64
-D_FILE_OFFSET_BITS=64
-DSPEC_LP64
-DSPEC_LINUX

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=3
-fno-strict-overflow -L/usr/local/je5.0.1-64/lib
-ljemalloc

C++ benchmarks:

520.omnetpp_r: basepeak = yes

(Continued on next page)
Huawei CH225 V5 (Intel Xeon Gold 5118)

SPECrate2017_int_base = 121

SPECrate2017_int_peak = 128

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2017 License</td>
<td>3175</td>
</tr>
<tr>
<td>Test Sponsor</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by</td>
<td>Huawei</td>
</tr>
<tr>
<td>Test Date</td>
<td>Sep-2018</td>
</tr>
<tr>
<td>Hardware Availability</td>
<td>Jul-2017</td>
</tr>
<tr>
<td>Software Availability</td>
<td>Mar-2018</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

541.leela_r (continued):
- `-L/usr/local/je5.0.1-64/lib -ljemalloc`

Fortran benchmarks:
- 548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links: