Huawei

Huawei 2288H V5 (Intel Xeon Gold 6252)

| SPECspeed2017_fp_base = 139 | SPECspeed2017_fp_peak = 140 |

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Mar-2019</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Apr-2019</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Dec-2018</td>
</tr>
</tbody>
</table>

Threads

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>48</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>48</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>48</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>48</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>48</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>48</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>48</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>48</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>48</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>48</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Gold 6252
- **Max MHz.:** 3700
- **Nominal:** 2100
- **Enabled:** 48 cores, 2 chips
- **Orderable:** 1,2 cores
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **Cache L2:** 1 MB I+D on chip per core
- **Cache L3:** 35.75 MB I+D on chip per chip
- **Memory:** 384 GB (24 x 16 GB 2Rx8 PC4-2933Y-R)
- **Storage:** 1 x 1200 GB SAS, 10000 RPM
- **Other:** None

Software

- **OS:** SUSE Linux Enterprise Server 12 SP4 (x86_64) 4.12.14-94.41-default
- **Compiler:** C/C++: Version 19.0.1.144 of Intel C/C++ Compiler Build 20181018 for Linux; Fortran: Version 19.0.1.144 of Intel Fortran Compiler Build 20181018 for Linux
- **Parallel:** Yes
- **Firmware:** Version 6.36 Released Feb-2019
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** None
Huawei
Huawei 2288H V5 (Intel Xeon Gold 6252)

SPECspeed2017_fp_base = 139
SPECspeed2017_fp_peak = 140

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>48</td>
<td>110</td>
<td>537</td>
<td>110</td>
<td>534</td>
<td>110</td>
<td>535</td>
<td>48</td>
<td>109</td>
<td>539</td>
<td>109</td>
<td>539</td>
<td>112</td>
<td>529</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>48</td>
<td>102</td>
<td>163</td>
<td>103</td>
<td>162</td>
<td>103</td>
<td>163</td>
<td>48</td>
<td>102</td>
<td>163</td>
<td>103</td>
<td>162</td>
<td>103</td>
<td>163</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>48</td>
<td>50.2</td>
<td>104</td>
<td>50.2</td>
<td>104</td>
<td>50.3</td>
<td>104</td>
<td>48</td>
<td>50.3</td>
<td>104</td>
<td>50.5</td>
<td>104</td>
<td>50.5</td>
<td>104</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>48</td>
<td>114</td>
<td>116</td>
<td>114</td>
<td>116</td>
<td>114</td>
<td>116</td>
<td>48</td>
<td>109</td>
<td>122</td>
<td>109</td>
<td>121</td>
<td>109</td>
<td>122</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>48</td>
<td>87.2</td>
<td>102</td>
<td>86.6</td>
<td>102</td>
<td>86.8</td>
<td>102</td>
<td>48</td>
<td>86.7</td>
<td>102</td>
<td>86.7</td>
<td>102</td>
<td>86.9</td>
<td>102</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>48</td>
<td>208</td>
<td>57.2</td>
<td>209</td>
<td>56.8</td>
<td>209</td>
<td>56.8</td>
<td>48</td>
<td>202</td>
<td>58.7</td>
<td>206</td>
<td>57.6</td>
<td>206</td>
<td>57.5</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>48</td>
<td>117</td>
<td>123</td>
<td>116</td>
<td>124</td>
<td>116</td>
<td>125</td>
<td>48</td>
<td>116</td>
<td>124</td>
<td>117</td>
<td>123</td>
<td>116</td>
<td>124</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>48</td>
<td>73.1</td>
<td>239</td>
<td>73.1</td>
<td>239</td>
<td>73.1</td>
<td>239</td>
<td>48</td>
<td>73.1</td>
<td>239</td>
<td>73.0</td>
<td>239</td>
<td>73.0</td>
<td>239</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>48</td>
<td>102</td>
<td>89.5</td>
<td>102</td>
<td>89.1</td>
<td>101</td>
<td>89.8</td>
<td>48</td>
<td>101</td>
<td>89.8</td>
<td>102</td>
<td>89.5</td>
<td>102</td>
<td>89.1</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>48</td>
<td>92.2</td>
<td>171</td>
<td>91.8</td>
<td>172</td>
<td>91.8</td>
<td>172</td>
<td>48</td>
<td>92.2</td>
<td>171</td>
<td>91.8</td>
<td>172</td>
<td>91.8</td>
<td>172</td>
</tr>
</tbody>
</table>

SPECspeed2017_fp_base = 139
SPECspeed2017_fp_peak = 140

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:
- KMP_AFFINITY = "granularity=fine,compact"
- LD_LIBRARY_PATH = "/spec2017/lib/ia32:/spec2017/lib/intel64"
- OMP_STACKSIZE = "192M"

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches
- Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
- Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
- Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS configuration:
- Power Policy Set to Load Balance
- Hyper-Threading Set to Disable

(Continued on next page)
Huawei 2288H V5 (Intel Xeon Gold 6252)

SPECspeed2017_fp_base = 139

SPECspeed2017_fp_peak = 140

CPU2017 License: 3175

Test Sponsor: Huawei

Tested by: Huawei

Hardware Availability: Apr-2019

Software Availability: Dec-2018

Test Date: Mar-2019

Platform Notes (Continued)

XPT Prefetch Set to Enabled

Sysinfo program /spec2017/bin/sysinfo
Rev: r5974 of 2018-05-19 9bcde8f2999c33d61f64985e45859ea9
running on sles12sp4 Sun Mar 17 07:15:05 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
 model name: Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz
 2 "physical id"s (chips)
 48 "processors"
 cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores: 24
 siblings: 24
 physical 0: cores 0 1 2 3 4 5 6 8 9 10 11 12 13 16 17 18 19 20 21 25 26 27 28 29
 physical 1: cores 0 1 2 3 4 5 6 8 9 10 11 12 13 16 17 18 19 20 21 25 26 27 28 29

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian
 CPU(s): 48
 On-line CPU(s) list: 0-47
 Thread(s) per core: 1
 Core(s) per socket: 24
 Socket(s): 2
 NUMA node(s): 2
 Vendor ID: GenuineIntel
 CPU family: 6
 Model: 85
 Model name: Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz
 Stepping: 6
 CPU MHz: 2100.000
 CPU max MHz: 3700.0000
 CPU min MHz: 1000.0000
 BogoMIPS: 4200.00
 Virtualization: VT-x
 L1d cache: 32K
 L1i cache: 32K
 L2 cache: 1024K
 L3 cache: 36608K
 NUMA node0 CPU(s): 0-23
 NUMA node1 CPU(s): 24-47
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

(Continued on next page)
Huawei

Huawei 2288H V5 (Intel Xeon Gold 6252)

SPECspeed2017_fp_base = 139
SPECspeed2017_fp_peak = 140

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Platform Notes (Continued)

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid
aperfmpref pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3
invpcid_single ssbd mba ibrs ibpb tpr_shadow vmm_flexpriority ept vpid
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cmq mpx rt_d a avx512f
avx512dq rdseed adx clflushopt clwb intel_pt avx512cd avx512bw avx512vl
xsaveopt xsavec xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local
dtherm ida arat pln pts pku ospke avx512_vnni flush_l1d arch_capabilities

/proc/cpuinfo cache data
 cache size : 36608 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
physical chip.
 available: 2 nodes (0-1)
 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 node 0 size: 191932 MB
 node 0 free: 190341 MB
 node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 node 1 size: 193249 MB
 node 1 free: 192924 MB
 node distances:
 node 0 1
 0: 10 21
 1: 21 10

From /proc/meminfo
 MemTotal: 394426256 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 SuSE-release:
 SUSE Linux Enterprise Server 12 (x86_64)
 VERSION = 12
 PATCHLEVEL = 4
 # This file is deprecated and will be removed in a future service pack or release.
 # Please check /etc/os-release for details about this release.
 os-release:
 NAME="SLES"
 VERSION="12-SP4"
 VERSION_ID="12.4"
 PRETTY_NAME="SUSE Linux Enterprise Server 12 SP4"
 ID="sles"
 ANSI_COLOR="0;32"
Huawei 2288H V5 (Intel Xeon Gold 6252)

SPECspeed2017_fp_base = 139
SPECspeed2017_fp_peak = 140

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Platform Notes (Continued)

cpe_name="cpe:/o:suse:sles:12:sp4"

uname -a:
 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2017-5754 (Meltdown): Not affected
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Indirect Branch Restricted Speculation, IBPB, IBRS_FW

run-level 3 Mar 17 02:33

SPEC is set to: /spec2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda3 xfs 700G 15G 686G 3% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 BIOS INSYDE Corp. 6.36 02/15/2019
 Memory:
 24x Samsung M393A2K43CB2-CVF 16 GB 2 rank 2933

(End of data from sysinfo program)

Compiler Version Notes

===
 CC 619.lbm_s(base, peak) 638.imagick_s(base, peak) 644.nab_s(base, peak)
===
 Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
 Version 19.0.1.144 Build 20181018
 Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

===
 FC 607.cactuBSSN_s(base, peak)
===
 Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
 Version 19.0.1.144 Build 20181018
 Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
 Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,

(Continued on next page)
Huawei

Huawei 2288H V5 (Intel Xeon Gold 6252)

<table>
<thead>
<tr>
<th>SPECspeed2017_fp_base</th>
<th>139</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed2017_fp_peak</td>
<td>140</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Tested by: Huawei
Software Availability: Dec-2018

Compiler Version Notes (Continued)

Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
Intel (R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

FC 603.bwaves_s(base) 649.fotonik3d_s(base) 654.roms_s(base, peak)

Intel (R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

FC 603.bwaves_s(peak) 649.fotonik3d_s(peak)

Intel (R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 621.wrf_s(base) 627.cam4_s(base, peak) 628.pop2_s(base)

Intel (R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
Intel (R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

CC 621.wrf_s(peak) 628.pop2_s(peak)

Intel (R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
Intel (R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
Huawei
Huawei 2288H V5 (Intel Xeon Gold 6252)

SPECspeed2017_fp_base = 139

SPECspeed2017_fp_peak = 140

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Base Compiler Invocation

- **C benchmarks:**

  ```
  icc -m64 -std=c11
  ```

- **Fortran benchmarks:**

  ```
  ifort -m64
  ```

- **Benchmarks using both Fortran and C:**

  ```
  ifort -m64 icc -m64 -std=c11
  ```

- **Benchmarks using Fortran, C, and C++:**

  ```
  icpc -m64 icc -m64 -std=c11 ifort -m64
  ```

Base Portability Flags

- 603.bwaves_s: -DSPEC_LP64
- 607.cactuBSSN_s: -DSPEC_LP64
- 619.lbm_s: -DSPEC_LP64
- 621.wrf_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
- 627.cam4_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
- 628.pop2_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
- 638.imagick_s: -DSPEC_LP64
- 644.nab_s: -DSPEC_LP64
- 649.fotonik3d_s: -DSPEC_LP64
- 654.roms_s: -DSPEC_LP64

Base Optimization Flags

- **C benchmarks:**

  ```
  -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
  -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
  ```

- **Fortran benchmarks:**

  ```
  -DSPEC_OPENMP -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
  -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp
  -nostandard-realloc-lhs
  ```

- **Benchmarks using both Fortran and C:**

  ```
  -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
  -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
  -nostandard-realloc-lhs
  ```

(Continued on next page)
Huawei
Huawei 2288H V5 (Intel Xeon Gold 6252)

| SPECspeed2017 fp_base = 139 |
| SPECspeed2017 fp_peak = 140 |

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Text Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Base Optimization Flags (Continued)
Benchmarks using Fortran, C, and C++:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs

Peak Compiler Invocation
C benchmarks:
icc -m64 -std=c11

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags
C benchmarks:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP

Fortran benchmarks:
603.bwaves_s: -prof-gen(pass 1) -prof-use(pass 2) -DSPEC_SUPPRESS_OPENMP
-DSPEC_OPENMP -O2 -xCORE-AVX512 -qopt-prefetch -ipo -O3
-ffinite-math-only -no-prec-div -qopt-mem-layout-trans=4
-qopenmp -nostandard-realloc-lhs

649.fotonik3d_s: Same as 603.bwaves_s

654.roms_s: basepeak = yes

(Continued on next page)
SPEC CPU2017 Floating Point Speed Result

Huawei

Huawei 2288H V5 (Intel Xeon Gold 6252)

<table>
<thead>
<tr>
<th>SPECspeed2017_fp_peak</th>
<th>SPECspeed2017_fp_base</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>139</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Date: Mar-2019
Test Sponsor: Huawei
Hardware Availability: Apr-2019
Tested by: Huawei
Software Availability: Dec-2018

Peak Optimization Flags (Continued)

Benchmarks using both Fortran and C:

```
621.wrf_s: -prof-gen(pass 1) -prof-use(pass 2) -O2 -xCORE-AVX512
-qopt-prefetch -ipo -O3 -ffinite-math-only -no-prec-div
-qopt-mem-layout-trans=4 -DSPEC_SUPPRESS_OPENMP -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs

627.cam4_s: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs

628.pop2_s: Same as 621.wrf_s
```

Benchmarks using Fortran, C, and C++:

```
607.cactuBSSN_s: basepeak = yes
```

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links:

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.5 on 2019-03-17 07:15:04-0400.