SPEC® CPU2017 Integer Rate Result

Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

SPECrator2017_int_base = 119

SPECrator2017_int_peak = 124

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate2017_int_base</th>
<th>SPECrate2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbach_r</td>
<td>105</td>
<td>124</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>99.6</td>
<td>112</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>138</td>
<td>161</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>80.3</td>
<td>161</td>
</tr>
<tr>
<td>523.xalmachmk_r</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>525.x264_r</td>
<td>232</td>
<td>245</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>99.7</td>
<td></td>
</tr>
<tr>
<td>541.leela_r</td>
<td>92.1</td>
<td></td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>557.xz_r</td>
<td>79.5</td>
<td></td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Gold 5215
- **Max MHz.:** 3400
- **Nominal:** 2500
- **Enabled:** 20 cores, 2 chips, 2 threads/core
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 1 MB I+D on chip per core
- **L3:** 13.75 MB I+D on chip per core
- **Memory:** 384 GB (24 x 16 GB 2Rx8 PC4-2933Y-R, running at 2666)
- **Storage:** 1 x 1200 GB SAS, 10000 RPM
- **Other:** None

Software

- **OS:** SUSE Linux Enterprise Server 12 SP4 (x86_64)
- **Compiler:** C/C++: Version 19.0.1.144 of Intel C/C++ Compiler Build 20181018 for Linux; Fortran: Version 19.0.1.144 of Intel Fortran Compiler Build 20181018 for Linux
- **Parallel:** No
- **Firmware:** Version 6.36 Released Feb-2019
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 32/64-bit
- **Other:** jemalloc memory allocator V5.0.1
Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

SPECrate2017_int_base = 119
SPECrate2017_int_peak = 124

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Base</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Copies</td>
<td>Seconds</td>
<td>Ratio</td>
<td>Seconds</td>
<td>Ratio</td>
<td>Seconds</td>
<td>Ratio</td>
<td>Copies</td>
<td>Seconds</td>
<td>Ratio</td>
<td>Seconds</td>
<td>Ratio</td>
<td>Seconds</td>
<td>Ratio</td>
</tr>
<tr>
<td>500.perlbench_r</td>
<td>40</td>
<td>702</td>
<td>569</td>
<td>99.6</td>
<td>679</td>
<td>91.4</td>
<td>710</td>
<td>89.7</td>
<td>40</td>
<td>610</td>
<td>105</td>
<td>607</td>
<td>105</td>
<td>607</td>
<td>105</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>40</td>
<td>573</td>
<td>569</td>
<td>99.6</td>
<td>568</td>
<td>99.8</td>
<td>40</td>
<td>504</td>
<td>112</td>
<td>505</td>
<td>112</td>
<td>504</td>
<td>112</td>
<td>504</td>
<td>112</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>40</td>
<td>401</td>
<td>401</td>
<td>100</td>
<td>400</td>
<td>100</td>
<td>40</td>
<td>401</td>
<td>100</td>
<td>401</td>
<td>100</td>
<td>401</td>
<td>100</td>
<td>401</td>
<td>100</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>40</td>
<td>654</td>
<td>401</td>
<td>99.6</td>
<td>401</td>
<td>99.6</td>
<td>40</td>
<td>654</td>
<td>80.3</td>
<td>657</td>
<td>79.9</td>
<td>652</td>
<td>80.5</td>
<td>652</td>
<td>80.5</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>40</td>
<td>305</td>
<td>305</td>
<td>100</td>
<td>306</td>
<td>100</td>
<td>40</td>
<td>283</td>
<td>149</td>
<td>284</td>
<td>149</td>
<td>283</td>
<td>149</td>
<td>283</td>
<td>149</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>40</td>
<td>302</td>
<td>301</td>
<td>99.7</td>
<td>302</td>
<td>99.7</td>
<td>40</td>
<td>286</td>
<td>245</td>
<td>287</td>
<td>244</td>
<td>286</td>
<td>245</td>
<td>286</td>
<td>245</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>40</td>
<td>460</td>
<td>460</td>
<td>99.7</td>
<td>460</td>
<td>99.7</td>
<td>40</td>
<td>459</td>
<td>100</td>
<td>460</td>
<td>99.7</td>
<td>460</td>
<td>99.7</td>
<td>460</td>
<td>99.7</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>40</td>
<td>713</td>
<td>719</td>
<td>92.1</td>
<td>719</td>
<td>92.1</td>
<td>40</td>
<td>707</td>
<td>93.7</td>
<td>705</td>
<td>93.9</td>
<td>719</td>
<td>92.2</td>
<td>719</td>
<td>92.2</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>40</td>
<td>495</td>
<td>497</td>
<td>99.7</td>
<td>495</td>
<td>99.7</td>
<td>40</td>
<td>495</td>
<td>212</td>
<td>497</td>
<td>211</td>
<td>495</td>
<td>212</td>
<td>495</td>
<td>212</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>40</td>
<td>544</td>
<td>543</td>
<td>97.6</td>
<td>543</td>
<td>97.5</td>
<td>40</td>
<td>544</td>
<td>79.5</td>
<td>543</td>
<td>79.5</td>
<td>543</td>
<td>79.5</td>
<td>543</td>
<td>79.5</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3 > /proc/sys/vm/drop_caches
runcpu command invoked through numactl i.e.:
 numactl --interleave=all runcpu <etc>
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

(Continued on next page)
Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

SPECrate2017_int_base = 119
SPECrate2017_int_peak = 124

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

General Notes (Continued)

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

BIOS configuration:
Power Policy Set to Performance
SNC Set to Enabled
IMC Interleaving Set to 1-way Interleave
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5974 of 2018-05-19 9bcd8f2999c33ed61f64985e45859ea9
running on sles12sp4 Fri Mar 22 03:50:52 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

model name : Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz
 2 "physical id"s (chips)
 40 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 10
siblings : 20
physical 0: cores 0 1 2 3 4 8 9 10 11 12
physical 1: cores 0 1 2 3 4 8 9 10 11 12

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 40
On-line CPU(s) list: 0-39
Thread(s) per core: 2
Core(s) per socket: 10
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz
Stepping: 6
CPU MHz: 2500.000

(Continued on next page)
SPEC CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th>Huawei 2288H V5 (Intel Xeon Gold 5215)</th>
<th>Huawei</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_base = 119</td>
<td>Huawei</td>
</tr>
<tr>
<td>SPECrate2017_int_peak = 124</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPEC CPU2017 License: 3175</th>
<th>Test Date: Mar-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Apr-2019</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Dec-2018</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

CPU max MHz: 3400.0000
CPU min MHz: 1000.0000
BogoMIPS: 5000.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 14080K
NUMA node0 CPU(s): 0-9,20-29
NUMA node1 CPU(s): 10-19,30-39

Flags: fpu vme de pse tsc msr pae mce cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdppe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsguebase tsc_adjust bmi1 hle avx2 smep bmi2 erts invpcid rtm cqm mxpe rdt_a axx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xexts xsaveavx xsaves cmq_llc cmq_occup_llc cmq_mmb_total cmq_mmb_local dtherm ida arat pln pts pku ospke avx512_vnni flush_l1d arch_capabilities

From /proc/cpuinfo cache data
cache size: 14080 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29
node 0 size: 191904 MB
node 0 free: 191207 MB
node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39
node 1 size: 193279 MB
node 1 free: 192804 MB
node distances:
node 0: 10 21
node 1: 21 10

From /proc/meminfo
MemTotal: 394427760 kB
HugePages_Total: 0
Hugepagesize: 2048 KB

From /etc/*release* /etc/*version*
SuSE-release:
SUSE Linux Enterprise Server 12 (x86_64)

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

SPECrate2017_int_base = 119
SPECrate2017_int_peak = 124

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Platform Notes (Continued)

VERSION = 12
PATCHLEVEL = 4
This file is deprecated and will be removed in a future service pack or release.
Please check /etc/os-release for details about this release.

os-release:
NAME="SLES"
VERSION="12-SP4"
VERSION_ID="12.4"
PRETTY_NAME="SUSE Linux Enterprise Server 12 SP4"
ID="sles"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:12:sp4"

uname -a:
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2017-5754 (Meltdown): Not affected
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Indirect Branch Restricted Speculation, IBPB, IBRS_FW

run-level 3 Mar 22 03:47

SPEC is set to: /spec2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda3 xfs 700G 15G 686G 3% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

BIOS INSYDE Corp. 6.36 02/15/2019
Memory:
24x Samsung M393A2K43CB2-CVF 16 GB 2 rank 2933, configured at 2666

(End of data from sysinfo program)

Compiler Version Notes

==
CC 502.gcc_r(peak)
==

Intel(R) C Intel(R) 64 Compiler for applications running on IA-32, Version
(Continued on next page)
<table>
<thead>
<tr>
<th>Compiler Version Notes (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak) 557.xz_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CC 500.perlbench_r(peak)</td>
</tr>
<tr>
<td>Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CXXC 523.xalancbmk_r(peak)</td>
</tr>
<tr>
<td>Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version 19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CXXC 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>FC 548.exchange2_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.1.144 Build 20181018</td>
</tr>
<tr>
<td>Copyright (C) 1985-2018 Intel Corporation. All rights reserved.</td>
</tr>
</tbody>
</table>
Huawei
Huawei 2288H V5 (Intel Xeon Gold 5215)

SPECrate2017_int_base = 119
SPECrate2017_int_peak = 124

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Base Compiler Invocation

C benchmarks:
 icc -m64 -std=c11

C++ benchmarks:
 icpc -m64

Fortran benchmarks:
 ifort -m64

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
 -W1,-z,muldefs -xCORE-AVX512 -ipo 03 -no-prec-div
 -qopt-mem-layout-trans=4
 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
 -lqkmalloc

C++ benchmarks:
 -W1,-z,muldefs -xCORE-AVX512 -ipo 03 -no-prec-div
 -qopt-mem-layout-trans=4
 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
 -lqkmalloc

Fortran benchmarks:
 -W1,-z,muldefs -xCORE-AVX512 -ipo 03 -no-prec-div
 -qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
 -lqkmalloc
Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>119</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>124</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Tested by: Huawei
Software Availability: Dec-2018

Peak Compiler Invocation

C benchmarks (except as noted below):

```
icc -m64 -std=c11
```

$02.gcc_r.icc -m32 -std=c11 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/ia32_lin

C++ benchmarks (except as noted below):

```
icpc -m64
```

`523.xalancbmk_r.icpc -m32 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/ia32_lin`

Fortran benchmarks:

```
ifort -m64
```

Peak Portability Flags

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>-DSPEC_LP64 -DSPEC_LINUX_X64</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>-D_FILE_OFFSET_BITS=64</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>-D_FILE_OFFSET_BITS=64 -DSPEC_LINUX</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>-DSPEC_LP64</td>
</tr>
</tbody>
</table>

Peak Optimization Flags

C benchmarks:

```
500.perlbench_r. -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo  
-xCORE-AVX512 -03 -no-prec-div -qopt-mem-layout-trans=4  
-fno-strict-overflow  
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64 -lqkmalloc
```

```
502.gcc_r. -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo  
-xCORE-AVX512 -03 -no-prec-div -qopt-mem-layout-trans=4  
-L/usr/local/je5.0.1-32/lib -ljemalloc
```

```
505.mcf_r. -Wl,-z,muldefs -xCORE-AVX512 -ipo -03 -no-prec-div  
-qopt-mem-layout-trans=4
```

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288H V5 (Intel Xeon Gold 5215)

| SPECrate2017_int_base | 119 |
| SPECrate2017_int_peak | 124 |

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei
Test Date: Mar-2019
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Peak Optimization Flags (Continued)

505.mcf_r (continued):
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

525.x264_r: -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

557.xz_r: basepeak = yes

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

541.leela_r: Same as 531.deepsjeng_r

Fortran benchmarks:

548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.5 on 2019-03-22 03:50:52-0400.