SPEC® CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Gold 5215M)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Mar-2019</td>
</tr>
<tr>
<td>HardwareAvailability:</td>
<td>Apr-2019</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Dec-2018</td>
</tr>
</tbody>
</table>

Hardware

CPU Name: Intel Xeon Gold 5215M
Max MHz.: 3400
Nominal: 2500
Enabled: 20 cores, 2 chips, 2 threads/core
Orderable: 1.2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 13.75 MB I+D on chip per core
Memory: 192 GB (12 x 16 GB 2Rx8 PC4-2933Y-R, running at 2666)
Storage: 1 x 1200 GB SAS, 10000 RPM
Other: None

Software

OS: SUSE Linux Enterprise Server 12 SP4 (x86_64)
Compiler: C/C++: Version 19.0.1.144 of Intel C/C++ Compiler Build 20181018 for Linux; Fortran: Version 19.0.1.144 of Intel Fortran Compiler Build 20181018 for Linux
Firmware: Version 6.52 Released Mar-2019
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc memory allocator V5.0.1

SPECrate2017_int_base = 116
SPECrate2017_int_peak = 121
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>40</td>
<td>711</td>
<td>89.5</td>
<td>714</td>
<td>89.2</td>
<td>718</td>
<td>88.7</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>40</td>
<td>590</td>
<td>96.0</td>
<td>583</td>
<td>97.2</td>
<td>584</td>
<td>97.0</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>40</td>
<td>412</td>
<td>157</td>
<td>413</td>
<td>157</td>
<td>413</td>
<td>156</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>40</td>
<td>674</td>
<td>77.9</td>
<td>673</td>
<td>77.9</td>
<td>673</td>
<td>78.0</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>40</td>
<td>309</td>
<td>137</td>
<td>311</td>
<td>136</td>
<td>309</td>
<td>137</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>40</td>
<td>302</td>
<td>232</td>
<td>303</td>
<td>231</td>
<td>302</td>
<td>232</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>40</td>
<td>479</td>
<td>95.7</td>
<td>479</td>
<td>95.7</td>
<td>479</td>
<td>95.7</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>40</td>
<td>718</td>
<td>92.2</td>
<td>735</td>
<td>90.2</td>
<td>734</td>
<td>90.3</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>40</td>
<td>517</td>
<td>203</td>
<td>514</td>
<td>204</td>
<td>505</td>
<td>207</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>40</td>
<td>557</td>
<td>77.6</td>
<td>556</td>
<td>77.6</td>
<td>556</td>
<td>77.7</td>
</tr>
</tbody>
</table>

SPECrate2017_int_base = 116
SPECrate2017_int_peak = 121

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5

Transparent Huge Pages enabled by default

Prior to runcpu invocation

Filesystem page cache synced and cleared with:

sync; echo 3>/proc/sys/vm/drop_caches

runcpu command invoked through numactl i.e.:

numactl --interleave=all runcpu <etc>

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

(Continued on next page)
General Notes (Continued)

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Platform Notes

BIOS configuration:
Power Policy Set to Performance
XPT Prefetch Set to Enabled
Sysinfo program /spec2017/bin/sysinfo
Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bcc091c0f
running on linux-0o4j Fri Mar 29 08:16:23 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
 https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
 model name : Intel(R) Xeon(R) Gold 5215M CPU @ 2.50GHz
 2 "physical id"s (chips)
 40 "processors"
 cores, siblings (Caution: counting these is hw and system dependent. The following
 excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 10
 siblings : 20
 physical 0: cores 0 1 2 3 4 8 9 10 11 12
 physical 1: cores 0 1 2 3 4 8 9 10 11 12

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian
 CPU(s): 40
 On-line CPU(s) list: 0-39
 Thread(s) per core: 2
 Core(s) per socket: 10
 Socket(s): 2
 NUMA node(s): 2
 Vendor ID: GenuineIntel
 CPU family: 6
 Model: 85
 Model name: Intel(R) Xeon(R) Gold 5215M CPU @ 2.50GHz
 Stepping: 6
 CPU MHz: 2500.000
 CPU max MHz: 3400.0000
 CPU min MHz: 1000.0000

(Continued on next page)
Huawei 2288 V5 (Intel Xeon Gold 5215M)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>Huawei</td>
</tr>
<tr>
<td>Tested by:</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

SPEC CPU2017 Integer Rate Result

<table>
<thead>
<tr>
<th>SPECrate2017_int_base = 116</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak = 121</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

- **BogoMIPS:** 5000.00
- **Virtualization:** VT-x
- **L1d cache:** 32K
- **L1i cache:** 32K
- **L2 cache:** 1024K
- **L3 cache:** 14080K
- **NUMA node0 CPU(s):** 0-9,20-29
- **NUMA node1 CPU(s):** 10-19,30-39
- **Flags:** fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtses64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3nowprefetch cpuid_fault epb cat_l3 dcp_l3 invpcid_single ssbd mba ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hlxe avx2 smep bmi2 ertms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaveas cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni flush_lld arch_capabilities

/proc/cpuinfo cache data
- **cache size:** 14080 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
- **available:** 2 nodes (0-1)
 - node 0 cpus: 0 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29
 - node 0 size: 95165 MB
 - node 0 free: 94592 MB
 - node 1 cpus: 10 11 12 13 14 15 16 17 18 19 30 31 32 33 34 35 36 37 38 39
 - node 1 size: 96498 MB
 - node 1 free: 96000 MB
 - node distances:
 - node 0: 1
 - node 1: 21 10

From /proc/meminfo
- **MemTotal:** 196263536 kB
- **HugePages_Total:** 0
- **Hugepagesize:** 2048 kB

From /etc/*release* /etc/*version*
- **SuSE-release:**
 - SUSE Linux Enterprise Server 12 (x86_64)
 - VERSION = 12
 - PATCHLEVEL = 4

(Continued on next page)
SPEC CPU2017 Integer Rate Result

Huawei

Huawei 2288 V5 (Intel Xeon Gold 5215M)

<table>
<thead>
<tr>
<th>CPU2017 License</th>
<th>Test Date</th>
<th>Hardware Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3175</td>
<td>Mar-2019</td>
<td>Apr-2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Sponsor</th>
<th>Tested by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>Huawei</td>
</tr>
</tbody>
</table>

SPECrate2017_int_base = 116

SPECrate2017_int_peak = 121

Platform Notes (Continued)

```
# This file is deprecated and will be removed in a future service pack or release.
# Please check /etc/os-release for details about this release.

os-release:
    NAME="SLES"
    VERSION="12-SP4"
    VERSION_ID="12.4"
    PRETTY_NAME="SUSE Linux Enterprise Server 12 SP4"
    ID="sles"
    ANSI_COLOR="0;32"
    CPE_NAME="cpe:/o:suse:sles:12:sp4"

uname -a:
    x86_64 x86_64 x86_64 GNU/Linux

unlevel 3 Mar 29 08:15

SPEC is set to: /spec2017
    Filesystem  Type  Size  Used  Avail  Use%  Mounted on
    /dev/sda2  xfs  919G  11G  909G  2%  /

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
    BIOS INSYDE Corp. 6.52 03/16/2019
    Memory:
        4x NO DIMM NO DIMM
        12x Samsung M393A2K43CB2-CVF 16 GB 2 rank 2933, configured at 2666

(End of data from sysinfo program)
```

Compiler Version Notes

```
==============================================================================
CC   502.gcc_r(peak)
------------------------------------------------------------------------------
Intel(R) C Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.
==============================================================================

== CC 500.perlbench_r(base) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak) 557.xz_r(base, peak) ==
```

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Gold 5215M)

SPECrate2017_int_base = 116
SPECrate2017_int_peak = 121

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Mar-2019
Tested by: Huawei
Hardware Availability: Apr-2019
Software Availability: Dec-2018

Compiler Version Notes (Continued)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

==
CC 500.perlbench_r(peak)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

==
CXXC 523.xalancbmk_r(peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

==
CXXC 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base,
peak) 541.leela_r(base, peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

==
FC 548.exchange2_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.1.144 Build 20181018
Copyright (C) 1985-2018 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

(Continued on next page)
Huawei

Huawei 2288 V5 (Intel Xeon Gold 5215M)

SPECrate2017_int_base = 116
SPECrate2017_int_peak = 121

Copyright 2017-2019 Standard Performance Evaluation Corporation

Base Compiler Invocation (Continued)

Fortran benchmarks:
ifort -m64

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-stdlib=libc++
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

C++ benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-stdlib=libc++
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

Fortran benchmarks:
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
-stdlib=libc++
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-lqkmalloc

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m64 -std=c11

(Continued on next page)
Peak Compiler Invocation (Continued)

C++ benchmarks (except as noted below):
icpc -m64

523.xalancbmk_r: icpc -m32 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/ia32_lin

Fortran benchmarks:
ifort -m64

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4 -fno-strict-overflow -L/usr/local/Intel Compiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64 -lqkmalloc

502.gcc_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4 -L/usr/local/je5.0.1-32/lib -ljemalloc

Huawei

Huawei 2288 V5 (Intel Xeon Gold 5215M)

<table>
<thead>
<tr>
<th>SPECrate2017_int_base</th>
<th>Huawei 2288 V5 (Intel Xeon Gold 5215M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_int_peak</td>
<td>Huawei 2288 V5 (Intel Xeon Gold 5215M)</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Peak Optimization Flags (Continued)

505.mcf_r (continued):
- -lqkmalloc

525.x264_r -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-qlqkmalloc

557.xz_r: Same as 505.mcf_r

C++ benchmarks:

520.omnetpp_r -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.1.144/linux/compiler/lib/intel64
-qlqkmalloc

523.xalancbmk_r -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: Same as 520.omnetpp_r

541.leela_r: basepeak = yes

Fortran benchmarks:

548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.9-revC.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU2017 v1.0.2 on 2019-03-28 20:16:23-0400.