SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.
ASUS ESC8000 G4(Z11PG-D24) Server System (2.20 GHz, Intel Xeon Gold 5220)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>SPECspeed®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>127</td>
<td>128</td>
</tr>
</tbody>
</table>

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Hardware Availability: Apr-2019
Test Date: Jul-2019
Tested by: ASUSTeK Computer Inc.
Software Availability: May-2019

Hardware

<table>
<thead>
<tr>
<th>Threads</th>
<th>SPECspeed®2017_fp_base</th>
<th>SPECspeed®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s 36</td>
<td>36</td>
<td>525</td>
</tr>
<tr>
<td>607.cactuBSSN_s 36</td>
<td>147</td>
<td>525</td>
</tr>
<tr>
<td>619.lbm_s 36</td>
<td>98.6</td>
<td>124</td>
</tr>
<tr>
<td>621.wrf_s 36</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>627.cam4_s 36</td>
<td>100</td>
<td>195</td>
</tr>
<tr>
<td>628.pop2_s 36</td>
<td>68.1</td>
<td></td>
</tr>
<tr>
<td>638.imagick_s 36</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>644.nab_s 36</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>649.fotonik3d_s 36</td>
<td>84.7</td>
<td></td>
</tr>
<tr>
<td>654.roms_s 36</td>
<td>122</td>
<td></td>
</tr>
</tbody>
</table>

Software

| OS: | SUSE Linux Enterprise Server 15
| Compiler: | C/C++: Version 19.0.4.227 of Intel C/C++ Compiler Build 20190416 for Linux; Fortran: Version 19.0.4.227 of Intel Fortran Compiler Build 20190416 for Linux
| Parallel: | Yes
| Firmware: | Version 5102 released Feb-2019
| System State: | Run level 3 (multi-user)
| Base Pointers: | 64-bit
| Peak Pointers: | 64-bit
| Other: | None
| Power Management: | -- |
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td></td>
</tr>
<tr>
<td>603.bwaves_s</td>
<td>36</td>
<td>112</td>
<td>525</td>
<td>112</td>
<td>525</td>
<td>112</td>
<td>525</td>
<td>112</td>
<td>525</td>
<td>112</td>
<td>525</td>
<td>112</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>36</td>
<td>113</td>
<td>147</td>
<td>113</td>
<td>147</td>
<td>113</td>
<td>147</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>619.ibm_s</td>
<td>36</td>
<td>53.4</td>
<td>98.0</td>
<td>53.1</td>
<td>98.6</td>
<td>53.1</td>
<td>98.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>36</td>
<td>107</td>
<td>124</td>
<td>106</td>
<td>124</td>
<td>107</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>36</td>
<td>102</td>
<td>87.2</td>
<td>102</td>
<td>87.0</td>
<td>102</td>
<td>87.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>36</td>
<td>176</td>
<td>67.6</td>
<td>178</td>
<td>66.8</td>
<td>185</td>
<td>64.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>36</td>
<td>144</td>
<td>100</td>
<td>143</td>
<td>101</td>
<td>149</td>
<td>97.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>644.nab_s</td>
<td>36</td>
<td>89.5</td>
<td>195</td>
<td>89.6</td>
<td>195</td>
<td>90.1</td>
<td>194</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>36</td>
<td>108</td>
<td>84.3</td>
<td>108</td>
<td>84.3</td>
<td>109</td>
<td>83.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>654.roms_s</td>
<td>36</td>
<td>130</td>
<td>121</td>
<td>130</td>
<td>121</td>
<td>130</td>
<td>121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td>SPECspeed®2017_fp_base = 127</td>
<td></td>
<td></td>
<td></td>
<td>SPECspeed®2017_fp_peak = 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:
- KMP_AFFINITY = "granularity=fine,compact"
- LD_LIBRARY_PATH = "/spec2017_19u4/lib/intel64"
- OMP_STACKSIZE = "192M"
- Binaries compiled on a system with 1x Intel Core i9-799X CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5
- Transparent Huge Pages enabled by default
- Prior to runcpu invocation
- Filesystem page cache synced and cleared with: sync; echo 3>/proc/sys/vm/drop_caches

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration:
- VT-d = Disabled
- Patrol Scrub = Disabled
- HyperThreading = Disabled

(Continued on next page)
ENERGY_PERF_BIAS_CFG mode = performance
CSM Support = Disabled
Engine Boost = Level 3 (Max)
LLC dead line allc = Disabled
SR-IOV Support = Disabled
Sysinfo program /spec2017_19u4/bin/sysinfo
Rev: r5974 of 2018-05-19 9bcde8f2999c33d6f64985e45859ea9
running on linux-gh78 Fri Jul 5 09:15:04 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz
 2 "physical id"s (chips)
 36 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 18
siblings : 18
physical 0: cores 0 1 2 3 4 8 9 10 11 16 17 18 19 20 24 25 26 27
physical 1: cores 0 1 2 3 4 8 9 10 11 16 17 18 19 20 24 25 26 27

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 36
On-line CPU(s) list: 0-35
Thread(s) per core: 1
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz
Stepping: 6
CPU MHz: 2200.000
CPU max MHz: 3900.0000
CPU min MHz: 1000.0000
BogoMIPS: 4400.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.
ASUS ESC8000 G4(Z11PG-D24) Server System
(2.20 GHz, Intel Xeon Gold 5220)

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>9016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>ASUSTeK Computer Inc.</td>
</tr>
<tr>
<td>Tested by:</td>
<td>ASUSTeK Computer Inc.</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Jul-2019</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Apr-2019</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>May-2019</td>
</tr>
</tbody>
</table>

SPECspeed®2017_fp_base = 127

SPECspeed®2017_fp_peak = 128

Platform Notes (Continued)

```
L3 cache: 25344K
NUMA node0 CPU(s): 0-17
NUMA node1 CPU(s): 18-35
Flags: fpu vme de pse tsc msr pae mca cmov
        pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdscvt
        lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid
        aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3
        sdbg fma cx16 xptr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
        tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault
        epb cat_l3 cdp_l3 invpcid_single mba tpr_shadow vnumi flexpriority ept vpid fsgsbase
        tsc_adjust bmi1 hle avx2 smep bmi2  ertz cmpx12f avx512dq rdsse adx smap clflushopt clwb intel_pt
        avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsavees cqm_llc cqm_occup_llc
        cqm_mbm_total cqm_mbm_local ibpib ibrs stibp dtherm ida arat pln pts hwp hwp_act_window
        hwp_epp hwp_pkg_req pku ospke avx512_vnni arch_capabilities ssbd
```

```
From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
physical chip.
    available: 2 nodes (0-1)
    node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
    node 0 size: 385577 MB
    node 0 free: 385080 MB
    node 1 cpus: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
    node 1 size: 386993 MB
    node 1 free: 386314 MB
    node distances:
      node  0  1
      0: 10  21
      1: 21  10

From /proc/meminfo
    MemTotal: 791113092 kB
    HugePages_Total: 0
    Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
    NAME="SLES"
    VERSION="15"
    VERSION_ID="15"
    PRETTY_NAME="SUSE Linux Enterprise Server 15"
    ID="sles"
    ID_LIKE="suse"
    ANSI_COLOR="0;32"
```

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.

ASUS ESC8000 G4(Z11PG-D24) Server System
(2.20 GHz, Intel Xeon Gold 5220)

<table>
<thead>
<tr>
<th>Test Sponsor:</th>
<th>ASUSTeK Computer Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested by:</td>
<td>ASUSTeK Computer Inc.</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

```plaintext
uname -a:
    Linux linux-gh78 4.12.14-23-default #1 SMP Tue May 29 21:04:44 UTC 2018 (cd0437b)
x86_64 x86_64 x86_64 GNU/Linux
```

Kernel self-reported vulnerability status:

- **CVE-2017-5754 (Meltdown):** Not affected
- **CVE-2017-5753 (Spectre variant 1):** Mitigation: __user pointer sanitization
- **CVE-2017-5715 (Spectre variant 2):** Mitigation: Indirect Branch Restricted Speculation, IBPB, IBRS_FW

run-level 3 Jul 5 09:14

SPEC is set to: /spec2017_19u4

```
<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/sda4</td>
<td>xfs</td>
<td>929G</td>
<td>15G</td>
<td>914G</td>
<td>2%</td>
<td>/</td>
</tr>
</tbody>
</table>
```

Additional information from dmidecode follows. **WARNING:** Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

- BIOS American Megatrends Inc. 5102 02/11/2019
- Memory:
 - 24x Samsung M393A4K40CB2-CVF 32 GB 2 rank 2933, configured at 2666

Compiler Version Notes

```
C               | 619.lbm_s(base, peak) 638.imagick_s(base, peak)
| 644.nab_s(base, peak)
```

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

C++, C, Fortran | 607.cactuBSSN_s(base, peak)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

(Continued on next page)
ASUSTeK Computer Inc.
ASUS ESC8000 G4(Z11PG-D24) Server System (2.20 GHz, Intel Xeon Gold 5220)

SPECspeed®2017_fp_peak = 128
SPECspeed®2017_fp_base = 127

Compiler Version Notes (Continued)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc -m64 -std=c11

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64
Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
627.cam4_s: -DSPEC_LP64 -DSPEC_CASE_FLAG
628.pop2_s: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian -assume byterecl
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP

Fortran benchmarks:
-DSPEC_OPENMP -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs

Benchmarks using both Fortran and C:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs

Benchmarks using Fortran, C, and C++:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs

Peak Compiler Invocation

C benchmarks:
icc -m64 -std=c11

Fortran benchmarks:
ifort -m64

(Continued on next page)
Peak Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP

Fortran benchmarks:

603.bwaves_s: -prof-gen(pass 1) -prof-use(pass 2) -DSPEC_SUPPRESS_OPENMP
-DSPEC_OPENMP -O2 -xCORE-AVX512 -qopt-prefetch -ipo -O3
-ffinite-math-only -no-prec-div -qopt-mem-layout-trans=4
-qopenmp -nostandard-realloc-lhs

649.fotonik3d_s: Same as 603.bwaves_s

654.roms_s: -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=4
-qopenmp -nostandard-realloc-lhs

Benchmarks using both Fortran and C:

621.wrf_s: -prof-gen(pass 1) -prof-use(pass 2) -O2 -xCORE-AVX512
-qopt-prefetch -ipo -O3 -ffinite-math-only -no-prec-div
-qopt-mem-layout-trans=4 -DSPEC_SUPPRESS_OPENMP -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs

627.cam4_s: -xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp
-DSPEC_OPENMP -nostandard-realloc-lhs

628.pop2_s: Same as 621.wrf_s

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.
ASUS ESC8000 G4(Z11PG-D24) Server System
(2.20 GHz, Intel Xeon Gold 5220)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>128</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>9016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>ASUSTeK Computer Inc.</td>
</tr>
<tr>
<td>Tested by:</td>
<td>ASUSTeK Computer Inc.</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Jul-2019</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Apr-2019</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>May-2019</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++:
-xCORE-AVX512 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -qopenmp -DSPEC_OPENMP
-nostandard-realloc-lhs

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

Tested with SPEC CPU®2017 v1.0.5 on 2019-07-04 21:15:04-0400.
Report generated on 2020-12-30 20:52:22 by CPU2017 PDF formatter v6255.
Originally published on 2019-07-23.