Hewlett Packard Enterprise
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_energy_base</td>
<td>387</td>
</tr>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>126</td>
</tr>
<tr>
<td>SPECspeed®2017_fp_energy_peak</td>
<td>388</td>
</tr>
</tbody>
</table>

CPU2017 License: 003
Test Sponsor: HPE
Tested by: HPE
Test Date: Aug-2019
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Hardware

Threads	0	45	90.0	135	180	225	270	315	360	405	450	495	540	585	630	675	720	765	810	855	900	945	990		
603.bwaves_s	64	454		354		330		306		282		258		234		210		186		162		138		114	
607.cactuBSSN_s	64	530		426		322		218		114		110		106		102		98		94		90		86	
619.lbm_s	64	420		316		212		108		104		100		96		92		88		84		80		76	
621.wrf_s	64	97		93		89		85		81		77		73		69		65		61		57		53	
627.cam4_s	64	85.9		84.9		83.9		82.9		81.9		80.9		79.9		78.9		77.9		76.9		75.9		74.9	
628.pop2_s	64	258		254		250		246		242		238		234		230		226		222		218		214	
638.imagick_s	64																								
644.nab_s	64	301		297		293		289		285		281		277		273		269		265		261		257	
649.fotonik3d_s	64	195		191		187		183		179		175		171		167		163		159		155		151	
654.roms_s	64	41		37		33		29		25		21		17		13		9		5		1		1	

- **603.bwaves_s**
- **607.cactuBSSN_s**
- **619.lbm_s**
- **621.wrf_s**
- **627.cam4_s**
- **628.pop2_s**
- **638.imagick_s**
- **644.nab_s**
- **649.fotonik3d_s**
- **654.roms_s**

Software

- **OS:** SUSE Linux Enterprise Server 15 (x86_64) SP1
- **Kernel:** 4.12.14-195-default
- **Compiler:** C/C++/Fortran: Version 2.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** HPE BIOS Version A41 07/20/2019 released Aug-2019
- **File System:** btrfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.2.0
- **Power Management:** Disabled
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>64</td>
<td>167</td>
<td>354</td>
<td>65.4</td>
<td>985</td>
<td>392</td>
<td>399</td>
<td>167</td>
<td>354</td>
<td>65.6</td>
<td>981</td>
<td>394</td>
<td>399</td>
</tr>
<tr>
<td>607.cacti5062_bcean_s</td>
<td>64</td>
<td>81.0</td>
<td>206</td>
<td>29.2</td>
<td>624</td>
<td>361</td>
<td>376</td>
<td>81.8</td>
<td>204</td>
<td>29.5</td>
<td>618</td>
<td>361</td>
<td>376</td>
</tr>
<tr>
<td>619.ibm_r</td>
<td>64</td>
<td>163</td>
<td>32.2</td>
<td>61.3</td>
<td>97.1</td>
<td>377</td>
<td>383</td>
<td>162</td>
<td>32.3</td>
<td>61.4</td>
<td>97.0</td>
<td>378</td>
<td>384</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>100</td>
<td>100</td>
<td>132</td>
<td>34.9</td>
<td>413</td>
<td>348</td>
<td>359</td>
<td>100</td>
<td>132</td>
<td>34.9</td>
<td>413</td>
<td>349</td>
<td>359</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>64</td>
<td>103</td>
<td>86.0</td>
<td>37.3</td>
<td>258</td>
<td>362</td>
<td>394</td>
<td>103</td>
<td>85.9</td>
<td>37.4</td>
<td>258</td>
<td>362</td>
<td>393</td>
</tr>
<tr>
<td>628.pov2_s</td>
<td>64</td>
<td>181</td>
<td>65.6</td>
<td>62.1</td>
<td>210</td>
<td>343</td>
<td>355</td>
<td>182</td>
<td>65.4</td>
<td>62.2</td>
<td>210</td>
<td>342</td>
<td>355</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>74.4</td>
<td>199</td>
<td>22.6</td>
<td>694</td>
<td>313</td>
<td>358</td>
<td>358</td>
<td>71.5</td>
<td>202</td>
<td>22.4</td>
<td>703</td>
<td>313</td>
<td>351</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>64</td>
<td>58.0</td>
<td>301</td>
<td>19.9</td>
<td>955</td>
<td>343</td>
<td>356</td>
<td>58.3</td>
<td>300</td>
<td>19.9</td>
<td>953</td>
<td>342</td>
<td>356</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>64</td>
<td>149</td>
<td>61.4</td>
<td>52.6</td>
<td>194</td>
<td>354</td>
<td>381</td>
<td>149</td>
<td>61.3</td>
<td>52.6</td>
<td>195</td>
<td>353</td>
<td>380</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>64</td>
<td>101</td>
<td>156</td>
<td>39.7</td>
<td>1443</td>
<td>393</td>
<td>399</td>
<td>101</td>
<td>155</td>
<td>39.7</td>
<td>1444</td>
<td>391</td>
<td>398</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

SPECspeed®2017_fp_base = 126
SPECspeed®2017_fp_energy_base = 387
SPECspeed®2017_fp_peak = 126
SPECspeed®2017_fp_energy_peak = 388

CPU2017 License: 003
Test Sponsor: HPE
Tested by: HPE

Test Date: Aug-2019
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Peak Results Table

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>64</td>
<td>167</td>
<td>154</td>
<td>65.4</td>
<td>388</td>
<td>167</td>
<td>388</td>
<td>167</td>
<td>154</td>
<td>65.4</td>
<td>388</td>
<td>167</td>
<td>388</td>
<td>167</td>
<td>154</td>
<td>65.4</td>
<td>388</td>
<td>167</td>
<td>388</td>
</tr>
<tr>
<td>607.cactuss_s</td>
<td>64</td>
<td>80.4</td>
<td>107</td>
<td>19.1</td>
<td>162</td>
<td>362</td>
<td>377</td>
<td>81.7</td>
<td>104</td>
<td>29.5</td>
<td>618</td>
<td>392</td>
<td>399</td>
<td>167</td>
<td>354</td>
<td>65.5</td>
<td>982</td>
<td>393</td>
<td>399</td>
</tr>
<tr>
<td>619.ibm_s</td>
<td>64</td>
<td>163</td>
<td>32.2</td>
<td>61.3</td>
<td>383</td>
<td>162</td>
<td>32.3</td>
<td>61.4</td>
<td>377</td>
<td>97.0</td>
<td>378</td>
<td>392</td>
<td>399</td>
<td>163</td>
<td>32.2</td>
<td>61.6</td>
<td>96.6</td>
<td>378</td>
<td>384</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>64</td>
<td>99.8</td>
<td>132</td>
<td>29.2</td>
<td>204</td>
<td>349</td>
<td>358</td>
<td>99.2</td>
<td>133</td>
<td>34.6</td>
<td>417</td>
<td>349</td>
<td>358</td>
<td>99.5</td>
<td>133</td>
<td>34.8</td>
<td>416</td>
<td>349</td>
<td>359</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>64</td>
<td>103</td>
<td>86.0</td>
<td>37.3</td>
<td>377</td>
<td>362</td>
<td>394</td>
<td>103</td>
<td>85.9</td>
<td>37.4</td>
<td>258</td>
<td>362</td>
<td>393</td>
<td>103</td>
<td>85.9</td>
<td>37.5</td>
<td>257</td>
<td>363</td>
<td>394</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>64</td>
<td>181</td>
<td>65.6</td>
<td>120</td>
<td>343</td>
<td>355</td>
<td>343</td>
<td>182</td>
<td>65.4</td>
<td>62.2</td>
<td>210</td>
<td>342</td>
<td>355</td>
<td>180</td>
<td>65.8</td>
<td>62.0</td>
<td>211</td>
<td>344</td>
<td>357</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>64</td>
<td>72.4</td>
<td>199</td>
<td>22.6</td>
<td>694</td>
<td>313</td>
<td>358</td>
<td>71.5</td>
<td>202</td>
<td>22.4</td>
<td>703</td>
<td>313</td>
<td>351</td>
<td>72.5</td>
<td>200</td>
<td>22.8</td>
<td>690</td>
<td>314</td>
<td>350</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>64</td>
<td>58.0</td>
<td>301</td>
<td>19.9</td>
<td>955</td>
<td>343</td>
<td>356</td>
<td>58.3</td>
<td>300</td>
<td>19.9</td>
<td>953</td>
<td>343</td>
<td>356</td>
<td>58.1</td>
<td>301</td>
<td>20.0</td>
<td>950</td>
<td>344</td>
<td>356</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>64</td>
<td>149</td>
<td>61.4</td>
<td>52.6</td>
<td>194</td>
<td>354</td>
<td>381</td>
<td>149</td>
<td>61.3</td>
<td>52.8</td>
<td>195</td>
<td>353</td>
<td>380</td>
<td>150</td>
<td>60.7</td>
<td>52.9</td>
<td>193</td>
<td>353</td>
<td>380</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>64</td>
<td>101</td>
<td>156</td>
<td>30.2</td>
<td>422</td>
<td>393</td>
<td>399</td>
<td>101</td>
<td>156</td>
<td>39.5</td>
<td>446</td>
<td>392</td>
<td>399</td>
<td>101</td>
<td>156</td>
<td>39.8</td>
<td>443</td>
<td>393</td>
<td>399</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes
The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes
The config file option 'submit' was used. 'numactl' was used to bind copies to the cores. See the configuration file for details.

Operating System Notes
'ulimit -s unlimited' was used to set environment stack size
'ulimit -1 2097152' was used to set environment locked pages in memory limit
runcpu command invoked through numactl i.e.: numactl --interleave=all runcpu <etc>

Set dirty_ratio=8 to limit dirty cache to 8% of memory
Set swappiness=1 to swap only if necessary
Set zone_reclaim_mode=1 to free local node memory and avoid remote memory sync then drop_caches=3 to reset caches before invoking runcpu

dirty_ratio, swappiness, zone_reclaim_mode and drop_caches were all set using privileged echo (e.g. echo 1 > /proc/sys/vm/swappiness).

Transparent huge pages set to 'always' for this run (OS default)
Environment Variables Notes

Environment variables set by runcpu before the start of the run:

- GOMP_CPU_AFFINITY = "0-63"
- LD_LIBRARY_PATH =

```bash
"/cpu2017/amd_speed_aocc200_rome_C_lib/64;/cpu2017/amd_speed_aocc200_rome_C_lib/32:"
```
- MALLOC_CONF = "retain:true"
- OMP_DYNAMIC = "false"
- OMP_SCHEDULE = "static"
- OMP_STACKSIZE = "128M"
- OMP_THREAD_LIMIT = "64"

Environment variables set by runcpu during the 607.cactuBSSN_s peak run:
- GOMP_CPU_AFFINITY = "0-63"

Environment variables set by runcpu during the 621.wrf_s peak run:
- GOMP_CPU_AFFINITY = "0-63"

Environment variables set by runcpu during the 654.roms_s peak run:
- GOMP_CPU_AFFINITY = "0-63"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7601 CPU + 512GB Memory using Fedora 26

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v9.1.0 in Ubuntu 19.04 with -O3 -znver2 -flto
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Submitted by: "Bucek, James" <james.bucek@hpe.com>
Submitted: Tue Sep 17 00:02:18 EDT 2019
Submission: cpu2017-20190903-17798.sub

Submitted by: "Bucek, James" <james.bucek@hpe.com>
Submitted: Tue Sep 17 09:00:11 EDT 2019
Submission: cpu2017-20190903-17798.sub
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

SPECspeed®2017_fp_base =	126
SPECspeed®2017_fp_energy_base =	387
SPECspeed®2017_fp_peak =	126
SPECspeed®2017_fp_energy_peak =	388

CPU2017 License: 003
Test Sponsor: HPE
Tested by: HPE

Test Date: Aug-2019
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Platform Notes

BIOS Configuration:
- AMD SMT Option set to Disabled
- Thermal Configuration set to Maximum Cooling
- Determinism Control set to Manual
- Performance Determinism set to Power Deterministic
- Memory Patrol Scrubbing set to Disabled
- NUMA memory domains per socket set to Four memory domains per socket
- Workload Profile set to General Peak Frequency Compute
- Minimum Processor Idle Power Core C-State set to C6 State

Sysinfo program /cpu2017/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7ed1be6e46a485a0011
running on dl325gen10 Sat Aug 31 19:41:38 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 7702P 64-Core Processor
1 "physical id"s (chips)
64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 64
siblings : 64
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 1
Core(s) per socket: 64
Socket(s): 1
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7702P 64-Core Processor

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

SPECspeed®2017_fp_base	126
SPECspeed®2017_fp_energy_base	387
SPECspeed®2017_fp_peak	126
SPECspeed®2017_fp_energy_peak	388

CPU2017 License: 003
Test Sponsor: HPE
Test Date: Aug-2019
Tested by: HPE
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Platform Notes (Continued)

- Stepping: 0
- CPU MHz: 2000.000
- CPU max MHz: 2000.0000
- CPU min MHz: 1500.0000
- BogoMIPS: 3992.33
- Virtualization: AMD-V
- L1d cache: 32K
- L1i cache: 32K
- L2 cache: 512K
- L3 cache: 16384K
- NUMA node0 CPU(s): 0-15
- NUMA node1 CPU(s): 16-31
- NUMA node2 CPU(s): 32-47
- NUMA node3 CPU(s): 48-63
- Flags:

 - fpu vme de pse tsc msr pae mce cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm
 - constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes avx avx2 f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs kINIT tce topoext perfctr_core perfctr_nb bpext perfctr_l2 mwaitx cpb cat_l3 cd_p_l3 hw_pstate ssbd ibrs ibpb vmmcall fsgsbase bmi1 bmi2 aes2 smep bmi2 cmvd rdtp a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xgetbv1 xsaves cmq _llc cmq _occup _llc cmq _mbm _total cmq _mbm _local clzero irperf xsaveerptr arat npt lbrv svm _lock nrip_save tsc _scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v _vmsave _vmload vgfl umip rdpid overflow_recov succor smca

/proc/cpuinfo cache data

- cache size : 512 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

- available: 4 nodes (0-3)
- node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- node 0 size: 64290 MB
- node 0 free: 64154 MB
- node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
- node 1 size: 64507 MB
- node 1 free: 64367 MB
- node 2 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
- node 2 size: 64507 MB
- node 2 free: 64211 MB
- node 3 cpus: 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
- node 3 size: 64465 MB
- node 3 free: 64330 MB
- node distances:

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th>SPECspeak2017_fp_base</th>
<th>SPECspeak2017_fp_energy_base</th>
<th>SPECspeak2017_fp_peak</th>
<th>SPECspeak2017_fp_energy_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>126</td>
<td>387</td>
<td>126</td>
<td>388</td>
</tr>
</tbody>
</table>

CPU2017 License: 003
Test Sponsor: HPE
Tested by: HPE
Test Date: Aug-2019
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Platform Notes (Continued)

node 0 1 2 3
0: 10 12 12 12
1: 12 10 12 12
2: 12 12 10 12
3: 12 12 12 10

From /proc/meminfo
MemTotal: 263958144 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release*/etc/*version*
os-release:
NAME="SLES"
VERSION="15-SP1"
VERSIO_NID="15.1"
PRETTY_NAME="SUSE Linux Enterprise Server 15 SP1"
ID="sles"
ID_LIKE="suse"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:15:sp1"

uname -a:
Linux dl325gen10 4.12.14-195-default #1 SMP Tue May 7 10:55:11 UTC 2019 (8fba516)
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling

run-level 3 Aug 31 13:56

SPEC is set to: /cpu2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda2 btrfs 40G 11G 29G 28% /

From /sys/devices/virtual/dmi/id

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)

ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th>CPU 2017 License: 003</th>
<th>Test Sponsor: HPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested by: HPE</td>
<td>Hardware Availability: Oct-2019</td>
</tr>
</tbody>
</table>

SPECspeed®2017_fp_base = 126
SPECspeed®2017_fp_energy_base = 387
SPECspeed®2017_fp_peak = 126
SPECspeed®2017_fp_energy_peak = 388

Platform Notes (Continued)

- BIOS: HPE A41 07/20/2019
- Vendor: HPE
- Product: ProLiant DL325 Gen10
- Product Family: ProLiant
- Serial: CN781302PS

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

- Memory:
 - 8x UNKNOWN NOT AVAILABLE
 - 8x UNKNOWN NOT AVAILABLE 32 GB 2 rank 2933

(End of data from sysinfo program)

Power Settings Notes

PTDaemon to measure power and temperature was run on a ProLiant DL360 Gen9 as a controller with 2x Intel Xeon E5-2660 v3 CPU and 128 GB of memory using Windows Server 2012 R2. Power management in the OS was disabled by setting Linux CPU governor to performance for all cores:

```
cpupower frequency-set -r -g performance
```

Power management in the BIOS was default except for any settings mentioned in BIOS Configuration. No power management settings were set in the management firmware. The optional optical drive was not installed. The system was configured with 7 HPE Small Form Factor Hard Drive Blanks (666987-B21), 8 DIMM blanks 2 high performance heatsinks and baffles that fit over the high performance heatsinks in order to produce correct airflow and cooling. The run was started and observed through the management firmware. The Embedded SATA controller was the HPE Smart Array S100i SR Gen10 SW RAID.

Compiler Version Notes

```
C                          619.lbm_s(base, peak) 638.imagick_s(base, peak) 644.nab_s(base, peak)
```

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

SPECspeed®2017_fp_base = 126
SPECspeed®2017_fp_energy_base = 387
SPECspeed®2017_fp_peak = 126
SPECspeed®2017_fp_energy_peak = 388

Compiler Version Notes (Continued)

C++, C, Fortran | 607.cactuBSSN_s(base, peak)
AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin
 AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
654.roms_s(base, peak)
AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Fortran, C | 621.wrf_s(base, peak) 627.cam4_s(base, peak)
628.pop2_s(base, peak)
AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_energy_base</td>
<td>387</td>
</tr>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>126</td>
</tr>
<tr>
<td>SPECspeed®2017_fp_energy_peak</td>
<td>388</td>
</tr>
</tbody>
</table>

CPU2017 License: 003
Test Sponsor: HPE
Test Date: Aug-2019
Tested by: HPE
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Compiler Version Notes (Continued)
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.ibm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -03 -ffast-math
-march=znver2 -fstruct-layout=3 -mllvm -unroll-threshold=50
-fremap-arrays -mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp

(Continued on next page)
Base Optimization Flags (Continued)

C benchmarks (continued):

- `mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000`
- `flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp`
- `DUSE_OPENMP -fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang`

Fortran benchmarks:

- `flto -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC`
- `-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver2`
- `-funroll-loops -Mrecursive -mllvm -vector-library=LIBMVEC -z muldefs`
- `-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -DUSE_OPENMP`
- `-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang`

Benchmarks using both Fortran and C:

- `flto -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC`
- `-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math`
- `-mllvm -Wl,-fstrict-layout=3 -mllvm -unroll-threshold=50`
- `-fremap-arrays -mllvm -function-specialize -mllvm -enable-gvn-hoist`
- `-mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp`
- `-mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000`
- `-flv-function-specialization -funroll-loops -Mrecursive -z muldefs`
- `-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -DUSE_OPENMP`
- `-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang`

Benchmarks using Fortran, C, and C++:

- `-std=c++98 -flto -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC`
- `-Wl,-mllvm -Wl,-reduce-array-computations=3`
- `-Wl,-mllvm -Wl,-suppress-fmas -O3 -ffast-math -march=znver2`
- `-fstruct-layout=3 -mllvm -unroll-threshold=50 -fremap-arrays`
- `-mllvm -function-specialize -mllvm -enable-gvn-hoist`
- `-mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp`
- `-mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000`
- `-flv-function-specialization -mllvm -loop-unswitch-threshold=200000`
- `-mllvm -unroll-threshold=100 -mllvm -enable-partial-unswitch`
- `-funroll-loops -Mrecursive -z muldefs -Kieee -fno-finite-math-only`
- `-DSPEC_OPENMP -fopenmp -DUSE_OPENMP -fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang`
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

<table>
<thead>
<tr>
<th>SPECs2017_fp_base</th>
<th>126</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECs2017_fp_energy_base</td>
<td>387</td>
</tr>
<tr>
<td>SPECs2017_fp_peak</td>
<td>126</td>
</tr>
<tr>
<td>SPECs2017_fp_energy_peak</td>
<td>388</td>
</tr>
</tbody>
</table>

CPU2017 License: 003
Test Sponsor: HPE
Tested by: HPE
Test Date: Aug-2019
Hardware Availability: Oct-2019
Software Availability: Aug-2019

Base Other Flags

C benchmarks:
-Wno-return-type

Fortran benchmarks:
-Wno-return-type

Benchmarks using both Fortran and C:
-Wno-return-type

Benchmarks using Fortran, C, and C++:
-Wno-return-type

Peak Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619.lbm_s: basepeak = yes

(Continued on next page)
Peak Optimization Flags (Continued)

638.imagick_s: basepeak = yes

644.nab_s: basepeak = yes

Fortran benchmarks:

603.bwaves_s: basepeak = yes

649.fotonik3d_s: basepeak = yes

654.roms_s: `-flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3
-Wl,-mllvm -Wl,-enable-X86-prefetching -O3 -march=znver2
-funroll-loops -Mrecursive -mllvm -vector-library=LIBMVEC
-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp
-DUSE_OPENMP -fopenmp=libomp -lomp -lpthread -ldl
-lmvec -lamlldibm -ljemalloc -lflang`

Benchmarks using both Fortran and C:

621.wrf_s: `-flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mllvm -vectorize-memory-aggressively
-mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -unroll-threshold=50 -fremap-arrays
-mllvm -vector-library=LIBMVEC
-mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp -mllvm -inline-threshold=1000
-fly-function-specialization -O3 -funroll-loops
-Mrecursive -Kieee -fno-finite-math-only -DSPEC_OPENMP
-fopenmp -DUSE_OPENMP -fopenmp=libomp -lomp -lpthread
-lmvec -lamlldibm -ljemalloc -lflang`

627.cam4_s: basepeak = yes

628.pop2_s: basepeak = yes

Benchmarks using Fortran, C, and C++:

-std=c++98 -flto -Wl,-mllvm -Wl,-function-specialize

(Continued on next page)
Hewlett Packard Enterprise
[Test Sponsor: HPE]
ProLiant DL325 Gen10
(2.00 GHz, AMD EPYC 7702P)

SPECspeed®2017_fp_base = 126
SPECspeed®2017_fp_energy_base = 387
SPECspeed®2017_fp_peak = 126
SPECspeed®2017_fp_energy_peak = 388

<table>
<thead>
<tr>
<th>CPU2017 License: 003</th>
<th>Test Date: Aug-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Oct-2019</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Aug-2019</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++ (continued):
- `Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC`
- `Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast -march=znver2`
- `mno-sse4a -fstruct-layout=5 -mllvm -vectorize-memory-aggressively`
- `mllvm -function-specialize -mllvm -enable-gvn-hoist`
- `mllvm -unroll-threshold=50 -fremap-arrays`
- `mllvm -vector-library=LIBMVEC -mllvm -reduce-array-computations=3`
- `mllvm -global-vectorize-slp -mllvm -inline-threshold=1000`
- `fly-function-specialization -mllvm -unroll-threshold=100`
- `mllvm -enable-partial-unswitch -mllvm -loop-unswitch-threshold=200000`
- `O3 -funroll-loops -Mrecursive -Kieee -fno-finite-math-only`
- `DSPEC_OPENMP -fopenmp -DUSE_OPENMP -fopenmp=libomp -lomp -lpthread`
- `ldl -lmvec -lamdlibm -ljemalloc -lflang`

Peak Other Flags

C benchmarks:
- `Wno-return-type`

Fortran benchmarks:
- `Wno-return-type`

Benchmarks using both Fortran and C:
- `Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `Wno-return-type`

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links:

Hewlett Packard Enterprise (Test Sponsor: HPE)

ProLiant DL325 Gen10 (2.00 GHz, AMD EPYC 7702P)

| SPECspeed\(^{2017}\) fp_base = 126 | SPECspeed\(^{2017}\) fp_energy_base = 387 |
| SPECspeed\(^{2017}\) fp_peak = 126 | SPECspeed\(^{2017}\) fp_energy_peak = 388 |

CPU2017 License: 003	Test Date: Aug-2019
Test Sponsor: HPE	Hardware Availability: Oct-2019
Tested by: HPE	Software Availability: Aug-2019

PTDaemon, SPEC CPU, and SPECspeed are trademarks or registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU\(^{2017}\) v1.1.0 on 2019-08-31 20:41:37-0400.
Originally published on 2019-09-17.