SPEC CPU®2017 Integer Rate Result

CPU2017 License:
9016

Test Sponsor:
ASUSTeK Computer Inc.

Tested by:
ASUSTeK Computer Inc.

Test Date:
Dec-2019

Hardware Availability:
Oct-2019

Software Availability:
May-2019

Hardware

<table>
<thead>
<tr>
<th>Program</th>
<th>Copies</th>
<th>SPECrate®2017_int_base</th>
<th>SPECrate®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>8</td>
<td>37.5</td>
<td>37.8</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>8</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>8</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>8</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>8</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>525.x264_r</td>
<td>8</td>
<td>79.4</td>
<td></td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>8</td>
<td>81.9</td>
<td></td>
</tr>
<tr>
<td>541.leela_r</td>
<td>8</td>
<td>78.4</td>
<td></td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>8</td>
<td>76.1</td>
<td></td>
</tr>
<tr>
<td>557.xz_r</td>
<td>8</td>
<td>22.5</td>
<td></td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>SUSE Linux Enterprise Server 15</td>
</tr>
<tr>
<td>Kernel</td>
<td>4.12.14-150.17-default</td>
</tr>
<tr>
<td>Compiler</td>
<td>C/C++: Version 19.0.4.227 of Intel C/C++</td>
</tr>
<tr>
<td>Compiler Build</td>
<td>20190416 for Linux</td>
</tr>
<tr>
<td>Fortran</td>
<td>Fortran: Version 19.0.4.227 of Intel Fortran</td>
</tr>
<tr>
<td>Compiler Build</td>
<td>20190416 for Linux</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>Firmware</td>
<td>Version 3102 released Oct-2019</td>
</tr>
<tr>
<td>File System</td>
<td>xfs</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>32/64-bit</td>
</tr>
<tr>
<td>Other</td>
<td>jemalloc: jemalloc memory allocator library V5.0.1</td>
</tr>
<tr>
<td>Power Management</td>
<td>Prefer performance at the cost of additional power usage.</td>
</tr>
</tbody>
</table>
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>8</td>
<td>440</td>
<td>28.9</td>
<td>445</td>
<td>28.6</td>
<td>443</td>
<td>28.7</td>
<td>8</td>
<td>381</td>
<td>33.4</td>
<td>375</td>
<td>33.9</td>
<td>380</td>
<td>33.5</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>8</td>
<td>349</td>
<td>32.5</td>
<td>350</td>
<td>32.4</td>
<td>348</td>
<td>32.5</td>
<td>8</td>
<td>302</td>
<td>37.5</td>
<td>303</td>
<td>37.4</td>
<td>303</td>
<td>37.4</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>8</td>
<td>277</td>
<td>46.7</td>
<td>276</td>
<td>46.8</td>
<td>278</td>
<td>46.5</td>
<td>8</td>
<td>278</td>
<td>46.5</td>
<td>276</td>
<td>46.8</td>
<td>278</td>
<td>46.5</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>8</td>
<td>496</td>
<td>21.2</td>
<td>494</td>
<td>21.2</td>
<td>496</td>
<td>21.2</td>
<td>8</td>
<td>496</td>
<td>21.1</td>
<td>497</td>
<td>21.1</td>
<td>496</td>
<td>21.2</td>
</tr>
<tr>
<td>523.xalanbmk_r</td>
<td>8</td>
<td>208</td>
<td>40.6</td>
<td>209</td>
<td>40.4</td>
<td>209</td>
<td>40.5</td>
<td>8</td>
<td>192</td>
<td>43.9</td>
<td>193</td>
<td>43.7</td>
<td>193</td>
<td>43.7</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>8</td>
<td>174</td>
<td>80.3</td>
<td>178</td>
<td>78.7</td>
<td>177</td>
<td>79.1</td>
<td>8</td>
<td>171</td>
<td>81.9</td>
<td>171</td>
<td>81.7</td>
<td>171</td>
<td>82.0</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>8</td>
<td>308</td>
<td>29.8</td>
<td>309</td>
<td>29.7</td>
<td>309</td>
<td>29.7</td>
<td>8</td>
<td>309</td>
<td>29.7</td>
<td>309</td>
<td>29.7</td>
<td>309</td>
<td>29.7</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>8</td>
<td>493</td>
<td>26.9</td>
<td>494</td>
<td>26.8</td>
<td>495</td>
<td>26.8</td>
<td>8</td>
<td>494</td>
<td>26.8</td>
<td>495</td>
<td>26.8</td>
<td>495</td>
<td>26.8</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>8</td>
<td>274</td>
<td>76.4</td>
<td>267</td>
<td>78.4</td>
<td>267</td>
<td>78.5</td>
<td>8</td>
<td>275</td>
<td>76.1</td>
<td>278</td>
<td>75.4</td>
<td>267</td>
<td>78.6</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>8</td>
<td>383</td>
<td>22.5</td>
<td>385</td>
<td>22.5</td>
<td>382</td>
<td>22.6</td>
<td>8</td>
<td>384</td>
<td>22.5</td>
<td>383</td>
<td>22.6</td>
<td>383</td>
<td>22.5</td>
</tr>
</tbody>
</table>

SPECrate®2017_int_base = 36.5

SPECrate®2017_int_peak = 37.8

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The taskset mechanism was used to bind copies to processors. The config file option 'submit' was used to generate taskset commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
OS set to performance mode via cpupower frequency-set -g performance

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
"/spec2017_110/lib/intel64:/spec2017_110/lib/ia32:/spec2017_110/je5.0.1-32"

General Notes

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3> /proc/sys/vm/drop_caches

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

General Notes (Continued)

jemalloc: configured and built at default for 32bit (i686) and 64bit (x86_64) targets; jemalloc: built with the RedHat Enterprise 7.4, and the system compiler gcc 4.8.5; jemalloc: sources available from jemalloc.net or https://github.com/jemalloc/jemalloc/releases

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration:
VT-d = Disabled
Race to Halt (RTH) = Disabled
AES = Disabled

Sysinfo program /spec2017_110/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7edbe6e46a485a0011 running on linux-zeo2 Fri Dec 13 16:42:59 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) E-2244G CPU @ 3.80GHz
 1 "physical id"s (chips)
 8 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 4
 siblings : 8
 physical 0: cores 0 1 2 3

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 8
On-line CPU(s) list: 0-7
Thread(s) per core: 2
Core(s) per socket: 4

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

SPECrate®2017_int_base = 36.5
SPECrate®2017_int_peak = 37.8

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Test Date: Dec-2019
Tested by: ASUSTeK Computer Inc.
Hardware Availability: Oct-2019
Software Availability: May-2019

Platform Notes (Continued)

Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 158
Model name: Intel(R) Xeon(R) E-2244G CPU @ 3.80GHz
Stepping: 10
CPU MHz: 3800.000
CPU max MHz: 4800.0000
CPU min MHz: 800.0000
BogoMIPS: 7584.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7
Flags: fpu vme de pse tsc msr pae mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl tsc_pagesize监控 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 ets invpcid rtm mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notif hwp_act_window hwp_epp md_clear flush_l1d

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
	available: 1 nodes (0)
	node 0 cpus: 0 1 2 3 4 5 6 7
	node 0 size: 64045 MB
	node 0 free: 63504 MB
	node distances: 0

From /proc/meminfo
	MemTotal: 65582808 kB
	HugePages_Total: 0
	Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

SPECrate®2017_int_base = 36.5
SPECrate®2017_int_peak = 37.8

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.

Platform Notes (Continued)

```
os-release:
NAME="SLES"
VERSION="15"
VERSION_ID="15"
PRETTY_NAME="SUSE Linux Enterprise Server 15"
ID="sles"
ID_LIKE="suse"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:15"

uname -a:
Linux linux-zeo2 4.12.14-150.17-default #1 SMP Thu May 2 15:15:46 UTC 2019 (bf13fb8)
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-3620 (L1 Terminal Fault): Mitigation: PTE Inversion; VMX: conditional
Microarchitectural Data Sampling:
cache flushes, SMT vulnerable
CVE-2017-5754 (Meltdown):
Mitigation: PTI
CVE-2018-3639 (Speculative Store Bypass):
Mitigation: Speculative Store Bypass disabled
via prctl and seccomp
CVE-2017-5753 (Spectre variant 1):
Mitigation: __user pointer sanitation
CVE-2017-5715 (Spectre variant 2):
Mitigation: Full generic retpoline, IBPB:
conditional, IBRS_FW, STIBP: conditional, RSB
filling

run-level 3 Dec 13 16:42

SPEC is set to: /spec2017_110
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda4 xfs 929G 26G 904G 3% /
```

(Continued on next page)
Compiler Version Notes

<table>
<thead>
<tr>
<th>Language</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>502.gcc_r(peak)</td>
</tr>
<tr>
<td>Intel(R) C Intel(R) 64 Compiler for applications running on IA-32, Version 19.0.4.227 Build 20190416 Copyright (C) 1985-2019 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak) 557.xz_r(base, peak)</td>
</tr>
<tr>
<td>Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416 Copyright (C) 1985-2019 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
<tr>
<td>C++</td>
<td>523.xalancbmk_r(peak)</td>
</tr>
<tr>
<td>Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version 19.0.4.227 Build 20190416 Copyright (C) 1985-2019 Intel Corporation. All rights reserved.</td>
<td></td>
</tr>
</tbody>
</table>
SPEC CPU®2017 Integer Rate Result

ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

<table>
<thead>
<tr>
<th>SPECrate®2017_int_base</th>
<th>36.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_int_peak</td>
<td>37.8</td>
</tr>
</tbody>
</table>

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Test Date: Dec-2019
Tested by: ASUSTeK Computer Inc.
Hardware Availability: Oct-2019
Software Availability: May-2019

Compiler Version Notes (Continued)

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++ 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)</td>
<td></td>
</tr>
</tbody>
</table>
| Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved. |
| C++ 523.xalancbmk_r(peak) |
| Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved. |
| C++ 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak) |
| Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved. |
| Fortran 548.exchange2_r(base, peak) |
| Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved. |

Base Compiler Invocation

C benchmarks:
```
icc -m64 -std=c11
```

C++ benchmarks:
```
icpc -m64
```

Fortran benchmarks:
```
ifort -m64
```
SPEC CPU®2017 Integer Rate Result
Copyright 2017-2020 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.

SPECrate®2017_int_base = 36.5
SPECrate®2017_int_peak = 37.8

Test Date: Dec-2019
Hardware Availability: Oct-2019
Software Availability: May-2019

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

C++ benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

Fortran benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m64 -std=c11

C++ benchmarks (except as noted below):
icpc -m64

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

SPECrate®2017_int_base = 36.5
SPECrate®2017_int_peak = 37.8

Peak Compiler Invocation (Continued)

523.xalancbmk_r: icpc -m32 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/ia32_lin
Fortran benchmarks:
ifort -m64

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=4
-fno-strict-overflow
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

502.gcc_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/je5.0.1-32/lib -ljemalloc

505.mcf_r: -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

525.x264_r: -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS300-E10(P11C-C/4L) Server System
(3.80 GHz, Intel Xeon E-2244G)

SPECrate®2017_int_base = 36.5
SPECrate®2017_int_peak = 37.8

CPU2017 License: 9016
Test Date: Dec-2019
Test Sponsor: ASUSTeK Computer Inc.
Hardware Availability: Oct-2019
Tested by: ASUSTeK Computer Inc.
Software Availability: May-2019

 Peak Optimization Flags (Continued)

557.xz_r: Same as 505.mcf_r

C++ benchmarks:
520.omnetpp_r: -Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

523.xalancbmk_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX2 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: Same as 520.omnetpp_r

541.leela_r: Same as 520.omnetpp_r

Fortran benchmarks:
-Wl,-z,muldefs -xCORE-AVX2 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2019-12-13 03:42:59-0500.
Originally published on 2020-01-22.