SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.

ASUS RS700A-E9V2(KNPP-D32-R) Server System 2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206

SPECspeed®2017_fp_peak = 213

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.
Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Jun-2019

Threads

<table>
<thead>
<tr>
<th>Test</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>128</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>128</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>128</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>128</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>128</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>128</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>128</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>128</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>128</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>128</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** AMD EPYC 7742
- **Max MHz:** 3400
- **Nominal:** 2250
- **Enabled:** 128 cores, 2 chips, 2 threads/core
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 512 KB I+D on chip per core
- **L3:** 256 MB I+D on chip per chip, 16 MB shared / 4 cores
- **Other:** None
- **Memory:** 1 TB (16 x 64 GB 2Rx4 PC4-3200AA-R)
- **Storage:** 1 x 1 TB SATA SSD
- **Other:** None

Software

- **OS:** SUSE Linux Enterprise Server 15 SP1 (x86_64)
 Kernel 4.12.14-195-default
- **Compiler:** C/C++/Fortran: Version 2.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** Version 0401 released Dec-2019
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.1.0
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage
SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.

ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

Copyright 2017-2020 Standard Performance Evaluation Corporation

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>128</td>
<td>87.1</td>
<td>678</td>
<td>86.7</td>
<td>680</td>
<td>87.1</td>
<td>678</td>
<td>128</td>
<td>87.1</td>
<td>678</td>
<td>86.7</td>
<td>680</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>128</td>
<td>51.7</td>
<td>322</td>
<td>52.2</td>
<td>319</td>
<td>51.7</td>
<td>323</td>
<td>128</td>
<td>51.7</td>
<td>322</td>
<td>52.2</td>
<td>319</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>128</td>
<td>66.6</td>
<td>78.6</td>
<td>66.6</td>
<td>78.7</td>
<td>66.6</td>
<td>78.6</td>
<td>256</td>
<td>47.0</td>
<td>111</td>
<td>47.2</td>
<td>111</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>128</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>128</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>128</td>
<td>68.3</td>
<td>130</td>
<td>68.3</td>
<td>130</td>
<td>68.3</td>
<td>130</td>
<td>128</td>
<td>68.3</td>
<td>130</td>
<td>68.3</td>
<td>130</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>128</td>
<td>168</td>
<td>70.8</td>
<td>166</td>
<td>71.5</td>
<td>168</td>
<td>70.6</td>
<td>168</td>
<td>70.8</td>
<td>166</td>
<td>71.5</td>
<td>168</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>128</td>
<td>36.1</td>
<td>400</td>
<td>36.0</td>
<td>401</td>
<td>35.9</td>
<td>402</td>
<td>128</td>
<td>36.1</td>
<td>400</td>
<td>36.0</td>
<td>401</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>128</td>
<td>34.9</td>
<td>501</td>
<td>34.9</td>
<td>501</td>
<td>35.0</td>
<td>499</td>
<td>128</td>
<td>34.9</td>
<td>501</td>
<td>34.9</td>
<td>501</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>128</td>
<td>92.0</td>
<td>99.1</td>
<td>91.7</td>
<td>99.4</td>
<td>90.8</td>
<td>100</td>
<td>128</td>
<td>92.0</td>
<td>99.1</td>
<td>91.7</td>
<td>99.4</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>128</td>
<td>45.2</td>
<td>348</td>
<td>45.3</td>
<td>347</td>
<td>45.4</td>
<td>347</td>
<td>128</td>
<td>45.2</td>
<td>348</td>
<td>45.3</td>
<td>347</td>
</tr>
</tbody>
</table>

Compiler Notes

The AMD64 AOCC Compiler Suite is available at
http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

Set dirty_ratio=8 to limit dirty cache to 8% of memory
Set swappiness=1 to swap only if necessary
Set zone_reclaim_mode=1 to free local node memory and avoid remote memory
sync then drop_caches=3 to reset caches before invoking runcpu

dirty_ratio, swappiness, zone_reclaim_mode and drop_caches were
all set using privileged echo (e.g. echo 1 > /proc/sys/vm/swappiness).

Transparent huge pages set to 'always' for this run (OS default)

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

Operating System Notes (Continued)

OS set to performance mode via cpupower frequency-set -g performance.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-255"
LD_LIBRARY_PATH =

 MALLOCONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREADLIMIT = "256"

Environment variables set by runcpu during the 619.lbm_s peak run:

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7601 CPU + 512GB Memory using Fedora 26

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v9.1.0 in Ubuntu 19.04 with -O3 -znver2 -flto
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2
SPEC CPU®2017 Floating Point Speed Result

ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

Platform Notes

BIOS Configuration:
Power phase shedding = Disabled
SVM Mode = Disabled
SR-IOV support = Disabled
DRAM Scrub time = Disabled
Determinism Slider = Power
APBDIS = 1

Sysinfo program /spec2017c1/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7ed6b1e646a485a0011
running on linux-fkvs Fri Feb 7 16:42:42 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

model name : AMD EPYC 7742 64-Core Processor
2 "physical id"s (chips)
256 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 64
siblings : 128
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63

From lscpu:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 256
On-line CPU(s) list: 0-255
Thread(s) per core: 2
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7742 64-Core Processor
Stepping: 0

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.

Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Jun-2019

Platform Notes (Continued)

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

(Continued on next page)
ASUSTeK Computer Inc.

ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPEC CPU®2017 Floating Point Speed Result

Copyright 2017-2020 Standard Performance Evaluation Corporation

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.

Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Jun-2019

Platform Notes (Continued)

node 0 1
0: 10 32
1: 32 10

From /proc/meminfo
MemTotal: 1056660408 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release*/etc/*version*/

os-release:
NAME="SLES"
VERSION="15-SP1"
VERSION_ID="15.1"
PRETTY_NAME="SUSE Linux Enterprise Server 15 SP1"
ID="sles"
ID_LIKE="suse"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:15:sp1"

uname -a:
Linux linux-fkvs 4.12.14-195-default #1 SMP Tue May 7 10:55:11 UTC 2019 (8fba516)
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: conditional, RSB filling

run-level 3 Feb 7 16:42

SPEC is set to: /spec2017c1

Filesystem Type Size Used Avail Use% Mounted on
/dev/sda4 xfs 929G 38G 892G 5% /

From /sys/devices/virtual/dmi/id
BIOS: American Megatrends Inc. 0401 12/27/2019
Vendor: ASUSTeK COMPUTER INC.
Product: KNPP-D32-R Series
Product Family: Server

(Continued on next page)
Platform Notes (Continued)

Serial: System Serial Number

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
- 16x Samsung M393A8G40AB2-CWE 64 kB 2 rank 3200
- 16x Unknown Unknown

(End of data from sysinfo program)

Compiler Version Notes

| C | 619.lbm_s(base, peak) 638.imagick_s(base, peak) 644.nab_s(base, peak) |
|---|---|---|

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

<table>
<thead>
<tr>
<th>C++, C, Fortran</th>
<th>607.cactuBSSN_s(base, peak)</th>
</tr>
</thead>
</table>

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result
Copyright 2017-2020 Standard Performance Evaluation Corporation

ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

ASUSTeK Computer Inc.

ASUSTeK Computer Inc.

Compiler Version Notes (Continued)

Fortran

603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak) 654.roms_s(base, peak)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Fortran, C

621.wrf_s(base, peak) 627.cam4_s(base, peak) 628.pop2_s(base, peak)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

603.bwaves_s: -DSPEC_LP64

(Continued on next page)
ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Tested by: ASUSTeK Computer Inc.

Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Jun-2019

Base Portability Flags (Continued)

607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-fflto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
-march=znver2 -fstruct-layout=3 -mllvm -unroll-threshold=50
-fremap-arrays -mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp
-mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000
-flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp
-DUSE_OPENMP -fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -liflang

Fortran benchmarks:
-fflto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver2
-funroll-loops -Mrecursive -mllvm -vector-library=LIBMVEC -z muldefs
-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -DUSE_OPENMP
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
-ljemalloc -liflang

Benchmarks using both Fortran and C:
-fflto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
-march=znver2 -fstruct-layout=3 -mllvm -unroll-threshold=50
-fremap-arrays -mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp
-mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000
-flv-function-specialization -funroll-loops -Mrecursive -z muldefs
-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -DUSE_OPENMP
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc

(Continued on next page)
Base Optimization Flags (Continued)

Benchmarks using both Fortran and C (continued):
-llflang

Benchmarks using Fortran, C, and C++:
-std=c++98 -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3
-Wl,-mlllvm -Wl,-suppress-fmas -O3 -ffast-math -march=znver2
-fstruct-layout=3 -mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -reduce-array-computations=3 -mlllvm -global-vectorize-slp
-mlllvm -vector-library=LIBMVEC -mlllvm -inline-threshold=1000
-ffv-function-specialization -mlllvm -loop-unswitch-threshold=200000
-mlllvm -unroll-threshold=100 -mlllvm -enable-partial-unswitch
-funroll-loops -Mrecursive -z muldefs -Kieee -fno-finite-math-only
-DSPEC_OPENMP -fopenmp -DUSE_OPENMP -fopenmp=libomp -lomp -lpthread
-ldl -lmvec -lamdlibm -ljemalloc -llflang

Base Other Flags

C benchmarks:
-Wno-return-type

Fortran benchmarks:
-Wno-return-type

Benchmarks using both Fortran and C:
-Wno-return-type

Benchmarks using Fortran, C, and C++:
-Wno-return-type

Peak Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

(Continued on next page)
Peak Compiler Invocation (Continued)

Benchmarks using Fortran, C, and C++:
```
clang++ clang flang
```

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

```
619.lbm_s: -flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mllvm -vectorize-memory-aggressively
-mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -unroll-threshold=50 -fremap-arrays
-mllvm -vector-library=LIBMVEC
-mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp -mllvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -fopenmp
-DUSE_OPENMP -lmvec -lamdlibm -fopenmp=libomp -lomp
-1pthread -ldl -ljemalloc -lflang
```

```
638.imagick_s: basepeak = yes
644.nab_s: basepeak = yes
```

Fortran benchmarks:

```
603.bwaves_s: basepeak = yes
649.fotonik3d_s: basepeak = yes
654.roms_s: basepeak = yes
```

Benchmarks using both Fortran and C:
ASUSTeK Computer Inc.
ASUS RS700A-E9V2(KNPP-D32-R) Server System
2.25 GHz, AMD EPYC 7742

SPECspeed®2017_fp_base = 206
SPECspeed®2017_fp_peak = 213

CPU2017 License: 9016
Test Sponsor: ASUSTeK Computer Inc.
Test Date: Feb-2020
Tested by: ASUSTeK Computer Inc.
Hardware Availability: Dec-2019
Software Availability: Jun-2019

Peak Optimization Flags (Continued)

621.wrf_s: basepeak = yes
627.cam4_s: basepeak = yes
628.pop2_s: basepeak = yes

Benchmarks using Fortran, C, and C++:
607.cactuBSSN_s: basepeak = yes

Peak Other Flags

C benchmarks:
- Wno-return-type

Fortran benchmarks:
- Wno-return-type

Benchmarks using both Fortran and C:
- Wno-return-type

Benchmarks using Fortran, C, and C++:
- Wno-return-type

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2020-02-07 03:42:41-0500.
Originally published on 2020-03-16.