SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 76422)

<table>
<thead>
<tr>
<th>Test Date:</th>
<th>Feb-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Availability:</td>
<td>Dec-2019</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Aug-2019</td>
</tr>
</tbody>
</table>

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

<table>
<thead>
<tr>
<th>Tested by:</th>
<th>HPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** AMD EPYC 76422
- **Max MHz:** 3300
- **Nominal:** 2300
- **Enabled:** 48 cores, 1 chip
- **Orderable:** 1 chip
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 512 KB I+D on chip per core
- **L3:** 256 MB I+D on chip per chip, 16 MB shared / 3 cores
- **Other:** None
- **Memory:** 512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)
- **Storage:** 1 x 480 GB SATA SSD, RAID 0
- **Other:** None

Software

- **OS:** SUSE Linux Enterprise Server 15 (x86_64) SP1
- **Kernel:** 4.12.14-195-default
- **Compiler:** C/C++/Fortran: Version 2.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** HPE BIOS Version A43 12/12/2019 released Dec-2019
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.1.0
- **Power Management:** BIOS set to prefer performance at the cost of additional power usage

Threads

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base (118)</th>
<th>SPECspeed®2017_fp_peak (119)</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s 48</td>
<td>603.bwaves_s 48</td>
</tr>
<tr>
<td>607.cactuBSSN_s 48</td>
<td>607.cactuBSSN_s 48</td>
</tr>
<tr>
<td>619.lbm_s 48</td>
<td>619.lbm_s 48</td>
</tr>
<tr>
<td>621.wrf_s 48</td>
<td>621.wrf_s 48</td>
</tr>
<tr>
<td>627.cam4_s 48</td>
<td>627.cam4_s 48</td>
</tr>
<tr>
<td>628.pop2_s 48</td>
<td>628.pop2_s 48</td>
</tr>
<tr>
<td>638.imagick_s 48</td>
<td>638.imagick_s 48</td>
</tr>
<tr>
<td>644.nab_s 48</td>
<td>644.nab_s 48</td>
</tr>
<tr>
<td>649.fotonik3d_s 48</td>
<td>649.fotonik3d_s 48</td>
</tr>
<tr>
<td>654.roms_s 48</td>
<td>654.roms_s 48</td>
</tr>
</tbody>
</table>

- **CPU2017 License:** 3
- **Test Sponsor:** HPE
- **Hardware Availability:** Dec-2019
- **Software Availability:** Aug-2019
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Base</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Base</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Base</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>48</td>
<td>181</td>
<td>326</td>
<td>181</td>
<td>326</td>
<td>181</td>
<td>326</td>
<td>48</td>
<td>181</td>
<td>326</td>
<td>181</td>
<td>326</td>
</tr>
<tr>
<td>603.cactuBSSN_s</td>
<td>48</td>
<td>81.4</td>
<td>205</td>
<td>81.9</td>
<td>204</td>
<td>81.6</td>
<td>204</td>
<td>48</td>
<td>81.4</td>
<td>205</td>
<td>81.6</td>
<td>204</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>48</td>
<td>166</td>
<td>31.6</td>
<td>166</td>
<td>31.6</td>
<td>166</td>
<td>31.6</td>
<td>48</td>
<td>166</td>
<td>31.6</td>
<td>166</td>
<td>31.6</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>48</td>
<td>125</td>
<td>106</td>
<td>124</td>
<td>106</td>
<td>125</td>
<td>106</td>
<td>48</td>
<td>125</td>
<td>106</td>
<td>125</td>
<td>106</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>48</td>
<td>103</td>
<td>86.2</td>
<td>102</td>
<td>86.5</td>
<td>102</td>
<td>86.6</td>
<td>48</td>
<td>103</td>
<td>86.3</td>
<td>102</td>
<td>86.6</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>48</td>
<td>183</td>
<td>65.0</td>
<td>183</td>
<td>65.0</td>
<td>183</td>
<td>64.7</td>
<td>48</td>
<td>183</td>
<td>65.0</td>
<td>183</td>
<td>64.7</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>48</td>
<td>75.6</td>
<td>191</td>
<td>75.6</td>
<td>191</td>
<td>75.6</td>
<td>191</td>
<td>48</td>
<td>75.6</td>
<td>191</td>
<td>75.6</td>
<td>191</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>48</td>
<td>67.7</td>
<td>258</td>
<td>67.6</td>
<td>259</td>
<td>67.6</td>
<td>258</td>
<td>48</td>
<td>67.7</td>
<td>258</td>
<td>67.6</td>
<td>258</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>48</td>
<td>139</td>
<td>65.8</td>
<td>139</td>
<td>65.6</td>
<td>137</td>
<td>66.4</td>
<td>48</td>
<td>139</td>
<td>65.7</td>
<td>139</td>
<td>65.8</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>48</td>
<td>119</td>
<td>133</td>
<td>119</td>
<td>133</td>
<td>118</td>
<td>133</td>
<td>48</td>
<td>115</td>
<td>137</td>
<td>115</td>
<td>137</td>
</tr>
</tbody>
</table>

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

Set dirty_ratio=8 to limit dirty cache to 8% of memory
Set swappiness=1 to swap only if necessary
Set zone_reclaim_mode=1 to free local node memory and avoid remote memory
sync then drop_caches=3 to reset caches before invoking runcpu

dirty_ratio, swappiness, zone_reclaim_mode and drop_caches were all set using privileged echo (e.g. echo 1 > /proc/sys/vm/swappiness).

Transparent huge pages set to 'always' for this run (OS default)
Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-47"
LD_LIBRARY_PATH = "/home/cpu2017/amd_speed_aocc200_rome_C_lib/64;/home/cpu2017/amd_speed_a
occ200_rome_C_lib/32;"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "48"

Environment variables set by runcpu during the 607.cactuBSSN_s peak run:
GOMP_CPU_AFFINITY = "0-47"

Environment variables set by runcpu during the 627.cam4_s peak run:
GOMP_CPU_AFFINITY = "0-47"

Environment variables set by runcpu during the 649.fotonik3d_s peak run:
GOMP_CPU_AFFINITY = "0-47"

Environment variables set by runcpu during the 654.roms_s peak run:
GOMP_CPU_AFFINITY = "0-47"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7601 CPU + 512GB Memory using Fedora 26

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v9.1.0 in Ubuntu 19.04 with -O3 -znver2 -flto
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Platform Notes

BIOS Configuration
Thermal Configuration set to Maximum Cooling
AMD SMT Mode set to Disabled

(Continued on next page)
Platform Notes (Continued)

Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Minimum Processor Idle Power core C-State set to C6 State
Memory Patrol Scrubbing set to Disabled
Workload Profile set to General Peak Frequency Compute
NUMA memory domains per socket set to One memory domain per socket
Power Regulator Set to OS Control Mode

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7edeb1e6e46a485a001
running on linux-q10k Thu Feb 14 09:23:50 2019

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 7642 48-Core Processor
1 "physical id"s (chips)
48 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 48
siblings : 48
physical 0: cores 0 1 2 4 5 6 8 9 10 12 13 14 16 17 18 20 21 22 24 25 26 28 29 30
32 33 34 36 37 38 40 41 42 44 45 46 48 49 50 52 53 54 56 57 58 60 61 62

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 48
On-line CPU(s) list: 0-47
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 1
NUMA node(s): 1
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7642 48-Core Processor
Stepping: 0
CPU MHz: 2300.000
CPU max MHz: 2300.000
CPU min MHz: 1500.000
BogoMIPS: 4590.95

(Continued on next page)
Hewlett Packard Enterprise
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-47
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm
constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperf
movbe popcnt aes xsave avx f16c
rdseed lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch
osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpet perfctr_l2 mwAITx cpb
catl3 cdpl3 hw_pstate ssbd ibpb stibp vmmcall fsqgsbase bni1 avx2 smep bni2
sgpr rdtr_a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xgetbv xsetbv
xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr arat npt
lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter
ptthreshold avic v_vmsave_vmload vgfl umip rdpid overflow_recov succor smca

From /proc/cpuinfo cache data
 cache size : 512 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
 physical chip.
 available: 1 nodes (0)
 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

From /proc/meminfo
 MemTotal: 528109068 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="SLES"
 VERSION="15-SP1"
 VERSION_ID="15.1"
 PRETTY_NAME="SUSE Linux Enterprise Server 15 SP1"
 ID="sles"
 ID_LIKE="suse"
 ANSI_COLOR="0;32"
 CPE_NAME="cpe:/o:suse:sles:15:sp1"

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

SPEC CPU®2017 Floating Point Speed Result
Copyright 2017-2020 Standard Performance Evaluation Corporation

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Aug-2019

Platform Notes (Continued)

uname -a:
 Linux linux-q10k 4.12.14-195-default #1 SMP Tue May 7 10:55:11 UTC 2019 (8fba516)
 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling

run-level 3 Feb 14 09:23

SPEC is set to: /home/cpu2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/sda3 xfs 155G 10G 146G 7% /home

From /sys/devices/virtual/dmi/id
 BIOS: HPE A43 12/12/2019
 Vendor: HPE
 Product: ProLiant DL325 Gen10 Plus
 Product Family: ProLiant
 Serial: CN792906TF

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
 Memory:
 8x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200
 8x UNKNOWN NOT AVAILABLE

(End of data from sysinfo program)

Compiler Version Notes

==
<table>
<thead>
<tr>
<th>C</th>
<th>619.lbm_s(base, peak) 638.imagick_s(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>644.nab_s(base, peak)</td>
</tr>
</tbody>
</table>
==

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

Compiler Version Notes (Continued)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Compiler Version Notes (Continued) (Continued on next page)
Compiler Version Notes (Continued)
AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
 A0CC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Base Compiler Invocation
C benchmarks:
 clang
Fortran benchmarks:
 flang
Benchmarks using both Fortran and C:
 flang clang
Benchmarks using Fortran, C, and C++:
 clang++ clang flang

Base Portability Flags
603.bwaves_s: -DSPEC_LP64
607.cactuBSSN_s: -DSPEC_LP64
619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags
C benchmarks:
 -flto -Wl,-mlllvm -Wl,-function-specialize
 -Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
 -Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
 -march=znver2 -fstruct-layout=3 -mlllvm -unroll-threshold=50

(Continued on next page)
Base Optimization Flags (Continued)

C benchmarks (continued):
- -fremap-arrays -mlllvm -function-specialize -mlllvm -enable-gvn-hoist
- -mlllvm -reduce-array-computations=3 -mlllvm -global-vectorize-slp
- -mlllvm -vector-library=LIBMVEC -mlllvm -inline-threshold=1000
- -flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp
- -fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
- -lflang

Fortran benchmarks:
- -flto -Wl,-mlllvm -Wl,-function-specialize
- -Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
- -Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -march=znver2
- -funroll-loops -Mrecursive -mlllvm -vector-library=LIBMVEC -z muldefs
- -Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -fopenmp=libomp
- -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang

Benchmarks using both Fortran and C:
- -flto -Wl,-mlllvm -Wl,-function-specialize
- -Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
- -Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
- -march=znver2 -fstruct-layout=3 -mlllvm -unroll-threshold=50
- -fremap-arrays -mlllvm -function-specialize -mlllvm -enable-gvn-hoist
- -mlllvm -reduce-array-computations=3 -mlllvm -global-vectorize-slp
- -mlllvm -vector-library=LIBMVEC -mlllvm -inline-threshold=1000
- -flv-function-specialization -funroll-loops -Mrecursive -z muldefs
- -Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp -fopenmp=libomp
- -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang

Benchmarks using Fortran, C, and C++:
- -std=c++98 -flto -Wl,-mlllvm -Wl,-function-specialize
- -Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
- -Wl,-mlllvm -Wl,-reduce-array-computations=3
- -Wl,-mlllvm -Wl,-suppress-fmas -O3 -ffast-math -march=znver2
- -fstruct-layout=3 -mlllvm -unroll-threshold=50 -fremap-arrays
- -mlllvm -function-specialize -mlllvm -enable-gvn-hoist
- -mlllvm -reduce-array-computations=3 -mlllvm -global-vectorize-slp
- -mlllvm -vector-library=LIBMVEC -mlllvm -inline-threshold=1000
- -flv-function-specialization -mlllvm -loop-unswitch-threshold=200000
- -mlllvm -unroll-threshold=100 -mlllvm -enable-partial-unswitch
- -funroll-loops -Mrecursive -z muldefs -Kieee -fno-finite-math-only
- -DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lpthread -ldl -lmvec
- -lamdlibm -ljemalloc -lflang
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

<table>
<thead>
<tr>
<th>CPU2017 License</th>
<th>Test Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Feb-2020</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Sponsor</th>
<th>Hardware Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE</td>
<td>Dec-2019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tested by</th>
<th>Software Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE</td>
<td>Aug-2019</td>
</tr>
</tbody>
</table>

Base Other Flags

C benchmarks:
- `-Wno-return-type` `-DUSE_OPENMP`

Fortran benchmarks:
- `-DUSE_OPENMP` `-Wno-return-type`

Benchmarks using both Fortran and C:
- `-DUSE_OPENMP` `-Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `-Wno-return-type` `-DUSE_OPENMP`

Peak Compiler Invocation

C benchmarks:
`clang`

Fortran benchmarks:
`flang`

Benchmarks using both Fortran and C:
`flang clang`

Benchmarks using Fortran, C, and C++:
`clang++ clang flang`

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619.lbm_s: `basepeak = yes`

638.imagick_s: `basepeak = yes`

644.nab_s: `basepeak = yes`

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL325 Gen10 Plus
(2.30 GHz, AMD EPYC 7642)

SPECspeed®2017_fp_base = 118
SPECspeed®2017_fp_peak = 119

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2020
Hardware Availability: Dec-2019
Software Availability: Aug-2019

Peak Optimization Flags (Continued)

Fortran benchmarks:

603.bwaves_s: basepeak = yes

649.fotonik3d_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3
-march=znver2 -funroll-loops -Mrecursive
-mlllvm -vector-library=LIBMVEC -Kieee
-fno-finite-math-only -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -lflang

654.roms_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3
-Wl,-mlllvm -Wl,-enable-X86-prefetching -O3 -march=znver2
-funroll-loops -Mrecursive -mlllvm -vector-library=LIBMVEC
-Kieee -fno-finite-math-only -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -lflang

Benchmarks using both Fortran and C:

621.wrf_s: basepeak = yes

627.cam4_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-slp -mlllvm -inline-threshold=1000
-flv-function-specialization -O3 -funroll-loops
-Mrecursive -Kieee -fno-finite-math-only -DSPEC_OPENMP
-fopenmp -fopenmp=libomp -lomp -lpthread -ldl -lmvec
-lamdlibm -ljemalloc -lflang

628.pop2_s: basepeak = yes

(Continued on next page)
Peak Optimization Flags (Continued)

Benchmarks using Fortran, C, and C++:
- std=c++98 -flto -Wl,-mlllvm -Wl,-function-specialize
- Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
- Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast -march=znver2
- mno-sse4a -fstruct-layout=5 -mlllvm -vectorize-memory-aggressively
- mlllvm -function-specialize -mlllvm -enable-gvn-hoist
- mlllvm -unroll-threshold=50 -fremap-arrays
- mlllvm -vector-library=LIBMVEC -mlllvm -reduce-array-computations=3
- mlllvm -global-vectorize-slp -mlllvm -inline-threshold=1000
- fly-function-specialization -mlllvm -unroll-threshold=100
- mlllvm -enable-partial-unswitch -mlllvm -loop-unswitch-threshold=200000
- O3 -funroll-loops -Mrecursive -Kieee -fno-finite-math-only
- DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lpthread -ldl -lmvec
- lamdlibm -ljemalloc -lflang

Peak Other Flags

C benchmarks:
- Wno-return-type -DUSE_OPENMP

Fortran benchmarks:
- DUSE_OPENMP -Wno-return-type

Benchmarks using both Fortran and C:
- DUSE_OPENMP -Wno-return-type

Benchmarks using Fortran, C, and C++:
- Wno-return-type -DUSE_OPENMP

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revH.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revH.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2019-02-14 09:23:50-0500.
Originally published on 2020-04-14.