SPEC CPU®2017 Integer Speed Result

Hardware

<table>
<thead>
<tr>
<th>Test Sponsor: HPE</th>
<th>Test Date: Mar-2020</th>
<th>Hardware Availability: Dec-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>ProLiant DL385 Gen10 Plus</td>
<td>3.10 GHz, AMD EPYC 7252</td>
<td></td>
</tr>
</tbody>
</table>

CPU Name: AMD EPYC 7252
Max MHz: 3200
Nominal: 3100
Enabled: 16 cores, 2 chips
Orderable: 1, 2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 512 KB I+D on chip per core
L3: 64 MB I+D on chip per core, 16 MB shared / 2 cores
Other: None
Memory: 1 TB (16 x 64 GB 2Rx4 PC4-3200AA-R)
Storage: 1 x 800 GB SAS SSD, RAID 0
Other: None

Software

OS: SUSE Linux Enterprise Server 15 (x86_64) SP1
Kernel: 4.12.14-195-default
Compiler: C/C++/Fortran: Version 2.0.0 of AOCC
Parallel: Yes
Firmware: HPE BIOS Version A42 12/12/2019 released Dec-2019
File System: btrfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc: jemalloc memory allocator library v5.2.0
Power Management: BIOS set to prefer performance at the cost of additional power usage

SPECspeed®2017_int_base = 8.20

| SPECspeed®2017_int_peak = 8.44 |

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>623.xalancbmk_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>625.x264_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>641.leela_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>657.xz_s</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

SPECspeed®2017_int_base = 8.20

| SPECspeed®2017_int_peak = 8.44 |

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Threads</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>623.xalancbmk_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>625.x264_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>641.leela_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>657.xz_s</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>16</td>
<td>393</td>
<td>4.52</td>
<td>401</td>
<td>4.43</td>
<td>396</td>
<td>4.48</td>
<td>1</td>
<td>373</td>
<td>4.76</td>
<td>389</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>16</td>
<td>440</td>
<td>9.05</td>
<td>437</td>
<td>9.11</td>
<td>442</td>
<td>9.00</td>
<td>1</td>
<td>436</td>
<td>9.12</td>
<td>436</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>16</td>
<td>332</td>
<td>14.2</td>
<td>332</td>
<td>14.2</td>
<td>332</td>
<td>14.2</td>
<td>1</td>
<td>314</td>
<td>15.1</td>
<td>313</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>16</td>
<td>349</td>
<td>4.67</td>
<td>421</td>
<td>3.88</td>
<td>348</td>
<td>4.69</td>
<td>1</td>
<td>349</td>
<td>4.68</td>
<td>349</td>
</tr>
<tr>
<td>623.xalanchmk_s</td>
<td>16</td>
<td>163</td>
<td>8.71</td>
<td>165</td>
<td>8.60</td>
<td>166</td>
<td>8.56</td>
<td>1</td>
<td>151</td>
<td>9.36</td>
<td>151</td>
</tr>
<tr>
<td>625.x264_s</td>
<td>16</td>
<td>149</td>
<td>11.8</td>
<td>150</td>
<td>11.8</td>
<td>151</td>
<td>11.7</td>
<td>1</td>
<td>145</td>
<td>12.1</td>
<td>145</td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>16</td>
<td>315</td>
<td>4.55</td>
<td>315</td>
<td>4.55</td>
<td>315</td>
<td>4.55</td>
<td>1</td>
<td>305</td>
<td>4.70</td>
<td>305</td>
</tr>
<tr>
<td>641.leela_s</td>
<td>16</td>
<td>432</td>
<td>3.95</td>
<td>439</td>
<td>3.89</td>
<td>438</td>
<td>3.90</td>
<td>1</td>
<td>437</td>
<td>3.90</td>
<td>437</td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>16</td>
<td>192</td>
<td>15.3</td>
<td>192</td>
<td>15.3</td>
<td>192</td>
<td>15.3</td>
<td>1</td>
<td>189</td>
<td>15.5</td>
<td>189</td>
</tr>
<tr>
<td>657.xz_s</td>
<td>16</td>
<td>333</td>
<td>18.6</td>
<td>335</td>
<td>18.5</td>
<td>333</td>
<td>18.6</td>
<td>16</td>
<td>333</td>
<td>18.6</td>
<td>333</td>
</tr>
</tbody>
</table>

SPECspeed®2017_int_base = 8.20

SPECspeed®2017_int_peak = 8.44

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

Submit Notes

The config file option 'submit' was used. 'numactl' was used to bind copies to the cores. See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.: numactl --interleave=all runcpu <etc>

Set dirty_ratio=8 to limit dirty cache to 8% of memory
Set swappiness=1 to swap only if necessary
Set zone_reclaim_mode=1 to free local node memory and avoid remote memory sync then drop_caches=3 to reset caches before invoking runcpu

dirty_ratio, swappiness, zone_reclaim_mode and drop_caches were all set using privileged echo (e.g. echo 1 > /proc/sys/vm/swappiness).

Transparent huge pages set to 'always' for this run (OS default)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-15"
LD_LIBRARY_PATH =
 "/home/cpu2017-bbn/amd_speed_aocc200_rome_C_lib/64;/home/cpu2017-bbn/amd_speed_aocc200_rome_C_lib/32:"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "16"

Environment variables set by runcpu during the 600.perlbench_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 602.gcc_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 605.mcf_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 620.omnetpp_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 623.xalancbmk_s peak run:
GOMP_CPU_AFFINITY = "0"
OMP_STACKSIZE = "128M"

Environment variables set by runcpu during the 625.x264_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 631.deepsjeng_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 641.leela_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 648.exchange2_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 657.xz_s peak run:
GOMP_CPU_AFFINITY = "0-15"
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7601 CPU + 512GB Memory using Fedora 26

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v9.1.0 in Ubuntu 19.04 with -O3 -znver2 -flto
jemalloc 5.2.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.2.0/jemalloc-5.2.0.tar.bz2

Platform Notes

BIOS Configuration
Thermal Configuration set to Maximum Cooling
AMD SMT Mode set to Disabled
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Minimum Processor Idle Power core C-State set to C6 State
Memory Patrol Scrubbing set to Disabled
Workload Profile set to General Peak Frequency Compute
NUMA memory domains per socket set to Four memory domains per socket
C-State Efficiency mode set to Disabled

Sysinfo program /home/cpu2017-bbn/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7edble6e46a485a0011
running on linux-30t0 Thu Feb 13 10:56:22 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

model name : AMD EPYC 7252 8-Core Processor
 2 "physical id"s (chips)
 16 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 8
siblings : 8
physical 0: cores 0 1 4 5 8 9 12 13
physical 1: cores 0 1 4 5 8 9 12 13

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Mar-2020
Hardware Availability: Dec-2019
Software Availability: Aug-2019

Platform Notes (Continued)

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7252 8-Core Processor
Stepping: 0
CPU MHz: 3100.000
CPU max MHz: 3100.0000
CPU min MHz: 1500.0000
BogoMIPS: 6187.98
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 16384K
NUMA node0 CPU(s): 0-7
NUMA node1 CPU(s): 8-15
Flags: fpu vme de pse tsc msr pae mce cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpmx perfctr_l2 mwaitx cpb cat_l3 cpd_l3 hw_pstate ssbd ibrs ibp stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cqm rdt_a rdsseed adx smap cllflushopt clwb sha_ni xsaveopt xsaves xsaveopt xsave xsetbv1 xsaves cqm_llc cqm_occup_llc cqm_mmb_total cqm_mmb_local clzero irperf xsaverptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_msave_vmload vgif umip rdpid overflow_recov succor smca

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

Test Date: Mar-2020
Hardware Availability: Dec-2019
Software Availability: Aug-2019

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

node 0 size: 515740 MB
node 0 free: 515240 MB
node 1 cpus: 8 9 10 11 12 13 14 15
node 1 size: 516092 MB
node 1 free: 515630 MB
node distances:
node 0 1
 0: 10 32
 1: 32 10

From /proc/meminfo
 MemTotal: 1056597216 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="SLES"
 VERSION="15-SP1"
 VERSION_ID="15.1"
 PRETTY_NAME="SUSE Linux Enterprise Server 15 SP1"
 ID="sles"
 ID_LIKE="suse"
 ANSI_COLOR="0;32"
 CPE_NAME=cpe:/o:suse:sles:15:sp1"

uname -a:
 Linux linux-30t0 4.12.14-195-default #1 SMP Tue May 7 10:55:11 UTC 2019 (8fba516)
 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

- CVE-2018-3620 (L1 Terminal Fault): Not affected
- Microarchitectural Data Sampling: Not affected
- CVE-2017-5754 (Meltdown): Not affected
- CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
- CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
- CVE-2017-5715 (Spectre variant 2): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling

run-level 3 Feb 13 10:56

SPEC is set to: /home/cpu2017-bbn

Filesystem Type Size Used Avail Use% Mounted on
/dev/sdc2 btrfs 743G 25G 717G 4% /home

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

Platform Notes (Continued)

From /sys/devices/virtual/dmi/id
 BIOS: HPE A42 12/12/2019
 Vendor: HPE
 Product: ProLiant DL385 Gen10 Plus
 Product Family: ProLiant
 Serial: CN79310517

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

 Memory:
 16x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200
 16x UNKNOWN NOT AVAILABLE

(End of data from sysinfo program)

Compiler Version Notes

C | 600.perlbench_s(base, peak) 602.gcc_s(base, peak) 605.mcf_s(base, peak) 625.x264_s(base, peak) 657.xz_s(base, peak)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
 AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 623.xalancbmk_s(peak)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
 AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 620.omnetpp_s(base, peak) 623.xalancbmk_s(base) 631.deepsjeng_s(base, peak) 641.leela_s(base, peak)

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
(Continued on next page)
Compiler Version Notes (Continued)

AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>623.xalancbmk_s</td>
<td>(peak)</td>
</tr>
</tbody>
</table>

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Fortran

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>648.exchange2_s</td>
<td>(base, peak)</td>
</tr>
</tbody>
</table>

AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Base Compiler Invocation

C benchmarks:
- clang

C++ benchmarks:
- clang++
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
[Test Sponsor: HPE]
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

Base Compiler Invocation (Continued)

Fortran benchmarks:
flang

Base Portability Flags

600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64
602.gcc_s: -DSPEC_LP64
605.mcf_s: -DSPEC_LP64
620.omnetpp_s: -DSPEC_LP64
623.xalancbmk_s: -DSPEC_LINUX -DSPEC_LP64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-ffast-math
-march=znver2
-flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
-march=znver2 -fstruct-layout=3 -mlllvm -unroll-threshold=50
-fremap-arrays -mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -reduce-array-computations=3 -mlllvm -global-vectorize-slp
-mlllvm -vector-library=LIBMVEC -mlllvm -inline-threshold=1000
-flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
-flang

C++ benchmarks:
-ffast-math
-march=znver2
-flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize -Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3
-Wl,-mlllvm -Wl,-suppress-fmas -O3 -ffast-math -march=znver2
-mlllvm -loop-unswitch-threshold=200000 -mlllvm -vector-library=LIBMVEC
-mlllvm -unroll-threshold=100 -flv-function-specialization
-mlllvm -enable-partial-unswitch -z muldefs -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
-flang

(Continued on next page)
Base Optimization Flags (Continued)

Fortran benchmarks:
- `-flto -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC`
- `-Wl,-mllvm -Wl,-reduce-array-computations=3 -ffast-math`
- `-Wl,-mllvm -Wl,-inline-recursion=4 -Wl,-mllvm -Wl,-lsr-in-nested-loop`
- `-Wl,-mllvm -Wl,-enable-iv-split -O3 -march=znver2 -funroll-loops`
- `-mrecursive -mllvm -vector-library=LIBMVEC -z muldefs`
- `-mllvm -disable-indvar-simplify -mllvm -unroll-aggressive`
- `-mllvm -unroll-threshold=150 -DSPEC_OPENMP -fopenmp -fopenmp=libomp`
- `-lomp -lpthread -ldl -lmvec -lamlb -ljemalloc -lflang`

Base Other Flags

C benchmarks:
- `-Wno-return-type -DUSE_OPENMP`

C++ benchmarks:
- `-Wno-return-type -DUSE_OPENMP`

Fortran benchmarks:
- `-DUSE_OPENMP -Wno-return-type`

Peak Compiler Invocation

C benchmarks:
- `clang`

C++ benchmarks:
- `clang++`

Fortran benchmarks:
- `flang`

Peak Portability Flags

- `600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64`
- `602.gcc_s: -DSPEC_LP64`
- `605.mcf_s: -DSPEC_LP64`
- `620.omnetpp_s: -DSPEC_LP64`

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

Peak Portability Flags (Continued)

623.xalancbmk_s: -DSPEC_LINUX -D_FILE_OFFSET_BITS=64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:

600.perlbench_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3
-fprofile-instr-generate(pass 1)
-fprofile-instr-use(pass 2) -Ofast -march=znver2
-mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-sl p -mlllvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -lopenmp
-lmvec -landlibm -lopenmp=libomp -lomp -lpthread -ldl
-ljemalloc -lflang

602.gcc_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-sl p -mlllvm -inline-threshold=1000
-flv-function-specialization -z muldefs -DSPEC_OPENMP
-lopenmp -fgnu89-inline -lopenmp=libomp -lomp -lpthread
-ldl -ljemalloc

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peak Optimization Flags (Continued)

605.mcf_s: -flto -Wl,-mllvm -Wl,-function-specialize
-mlvm -Wl,-mllvm -Wl,-region-vectorize
-mlvm -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-mlvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlvm -function-specialize-memory-aggressively
-mlvm -function-specialize -mlvm -enable-gvn-hoist
-mlvm -unroll-threshold=50 -fremap-arrays
-mlvm -vector-library=LIBMVEC
-mlvm -reduce-array-computations=3
-mlvm -global-vectorize-slp -mlvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -fopenmp
-lmvec -lamdlibm -fopenmp -lomp -lpthread -ldl
-ljemalloc -llang

625.x264_s: Same as 600.perlbench_s

657.xz_s: -flto -Wl,-mllvm -Wl,-function-specialize
-mlvm -Wl,-mllvm -Wl,-region-vectorize
-mlvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlvm -function-specialize-memory-aggressively
-mlvm -function-specialize -mlvm -enable-gvn-hoist
-mlvm -unroll-threshold=50 -fremap-arrays
-mlvm -vector-library=LIBMVEC
-mlvm -reduce-array-computations=3
-mlvm -global-vectorize-slp -mlvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -llang

C++ benchmarks:

620.omnetpp_s: -flto -Wl,-mllvm -Wl,-function-specialize
-mlvm -Wl,-mllvm -Wl,-region-vectorize
-mlvm -Wl,-mllvm -Wl,-vector-library=LIBMVEC
-mlvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -flv-function-specialization
-mlvm -unroll-threshold=100
-mlvm -enable-partial-unswitch
-mlvm -loop-unswitch-threshold=200000
-mlvm -vector-library=LIBMVEC
-mlvm -inline-threshold=1000 -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -llang

(Continued on next page)
Peak Optimization Flags (Continued)

623.xalancbmk_s: -m32 -flto -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=zvnver2 -flv-function-specialization
-mllvm -unroll-threshold=100
-mllvm -enable-partial-unswitch
-mllvm -loop-unswitch-threshold=200000
-mllvm -vector-library=LIBMVEC
-mllvm -inline-threshold=1000 -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lpthread -ldl -ljemalloc

631.deepsjeng_s: Same as 620.omnetpp_s

641.leela_s: Same as 620.omnetpp_s

Fortran benchmarks:
-ffast-math
-Wl,-mllvm -vector-library=LIBMVEC
-Wl,-reduce-array-computations=3 -ffast-math
-Wl,-mllvm -Wl,-inline-recursion=4 -Wl,-mllvm -Wl,-lsr-in-nested-loop
-Wl,-mllvm -Wl,-enable-lv-split -O3 -march=znver2 -funroll-loops
-Mrecursive -mllvm -vector-library=LIBMVEC
-mllvm -disable-indvar-simplify -mllvm -unroll-aggressive
-mllvm -unroll-threshold=150 -DSPEC_OPENMP -fopenmp -fopenmp=libomp
-lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang

Peak Other Flags

C benchmarks:
-Wno-return-type -DUSE_OPENMP

C++ benchmarks (except as noted below):
-Wno-return-type -DUSE_OPENMP

623.xalancbmk_s: -Wno-return-type -DUSE_OPENMP
-L/sppo/dev/cpu2017/v110/amd_speed_aocc200_rome_C_lib/32

Fortran benchmarks:
-DUSE_OPENMP -Wno-return-type
Hewlett Packard Enterprise
ProLiant DL385 Gen10 Plus
(3.10 GHz, AMD EPYC 7252)

SPECspeed®2017_int_base = 8.20
SPECspeed®2017_int_peak = 8.44

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revH.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revH.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2020-02-13 00:26:21-0500.
Report generated on 2020-04-14 14:08:52 by CPU2017 PDF formatter v6255.
Originally published on 2020-04-14.