SPEC CPU® 2017 Floating Point Rate Result

NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

<table>
<thead>
<tr>
<th>Test Sponsor</th>
<th>NEC Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tested by</td>
<td>NEC Corporation</td>
</tr>
<tr>
<td>CPU2017 License</td>
<td>9006</td>
</tr>
<tr>
<td>Hardware Availability</td>
<td>May-2020</td>
</tr>
<tr>
<td>Software Availability</td>
<td>Sep-2019</td>
</tr>
<tr>
<td>CPU Name</td>
<td>Intel Xeon Bronze 3206R</td>
</tr>
<tr>
<td>Max MHz</td>
<td>1900</td>
</tr>
<tr>
<td>Nominal:</td>
<td>1900</td>
</tr>
<tr>
<td>Enabled:</td>
<td>16 cores, 2 chips</td>
</tr>
<tr>
<td>Orderable:</td>
<td>1,2 chips</td>
</tr>
<tr>
<td>Cache L1:</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>Cache L2:</td>
<td>1 MB I+D on chip per core</td>
</tr>
<tr>
<td>Cache L3:</td>
<td>11 MB I+D on chip per chip</td>
</tr>
<tr>
<td>Memory:</td>
<td>384 GB (24 x 16 GB 2Rx8 PC4-2933Y-R, running at 2133)</td>
</tr>
<tr>
<td>Storage:</td>
<td>1 x 1 TB SATA, 7200 RPM, RAID 0</td>
</tr>
<tr>
<td>Other:</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OS</th>
<th>Red Hat Enterprise Linux Server release 7.7 (Maipo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compiler</td>
<td>C/C++: Version 19.0.4.227 of Intel C/C++ Compiler Build 20190416 for Linux; Fortran: Version 19.0.4.227 of Intel Fortran Compiler Build 20190416 for Linux</td>
</tr>
<tr>
<td>Parallel</td>
<td>No</td>
</tr>
<tr>
<td>Firmware</td>
<td>NEC BIOS Version U32 v2.32 03/09/2020 released Jun-2020</td>
</tr>
<tr>
<td>File System</td>
<td>ext4</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 3 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
<tr>
<td>Power Management</td>
<td>BIOS set to prefer performance at the cost of additional power usage</td>
</tr>
</tbody>
</table>

SPECrate® 2017 fp_base = 72.1

| SPECrate® 2017 fp_peak = 74.0 |
|-------------------------------|--------------------------|

<table>
<thead>
<tr>
<th>Spec Benchmark</th>
<th>SPECrate® 2017_fp_peak</th>
<th>SPECrate® 2017_fp_base</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>74.0</td>
<td>72.1</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>69.9</td>
<td>67.0</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>62.1</td>
<td>59.8</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>50.6</td>
<td>48.2</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>50.6</td>
<td>48.2</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>50.6</td>
<td>48.2</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>83.2</td>
<td>80.0</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>83.2</td>
<td>80.0</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>77.7</td>
<td>74.8</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>132</td>
<td>128</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>132</td>
<td>128</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>96.1</td>
<td>93.9</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>53.0</td>
<td>50.9</td>
</tr>
</tbody>
</table>

Hardware

Software
SPEC CPU®2017 Floating Point Rate Result

NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>72.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_fp_peak</td>
<td>74.0</td>
</tr>
</tbody>
</table>

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Tested by: NEC Corporation

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>16</td>
<td>585</td>
<td>274</td>
<td>585</td>
<td>274</td>
<td>587</td>
<td>273</td>
<td>585</td>
<td>274</td>
<td>585</td>
<td>274</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>16</td>
<td>407</td>
<td>49.8</td>
<td>407</td>
<td>49.8</td>
<td>408</td>
<td>49.7</td>
<td>407</td>
<td>49.8</td>
<td>408</td>
<td>49.7</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>16</td>
<td>382</td>
<td>39.8</td>
<td>384</td>
<td>39.6</td>
<td>385</td>
<td>39.5</td>
<td>382</td>
<td>39.8</td>
<td>383</td>
<td>39.7</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>16</td>
<td>865</td>
<td>48.4</td>
<td>869</td>
<td>48.2</td>
<td>870</td>
<td>48.1</td>
<td>865</td>
<td>48.4</td>
<td>869</td>
<td>48.2</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>16</td>
<td>602</td>
<td>62.1</td>
<td>602</td>
<td>62.0</td>
<td>600</td>
<td>62.2</td>
<td>602</td>
<td>62.1</td>
<td>600</td>
<td>62.2</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>16</td>
<td>260</td>
<td>65.0</td>
<td>272</td>
<td>61.9</td>
<td>259</td>
<td>65.1</td>
<td>260</td>
<td>65.0</td>
<td>259</td>
<td>65.1</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>16</td>
<td>431</td>
<td>83.2</td>
<td>431</td>
<td>83.2</td>
<td>431</td>
<td>83.2</td>
<td>431</td>
<td>83.2</td>
<td>431</td>
<td>83.2</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>16</td>
<td>482</td>
<td>50.5</td>
<td>482</td>
<td>50.6</td>
<td>482</td>
<td>50.6</td>
<td>482</td>
<td>50.6</td>
<td>482</td>
<td>50.6</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>16</td>
<td>454</td>
<td>61.7</td>
<td>453</td>
<td>61.7</td>
<td>453</td>
<td>61.8</td>
<td>454</td>
<td>61.7</td>
<td>453</td>
<td>61.7</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>16</td>
<td>300</td>
<td>133</td>
<td>301</td>
<td>132</td>
<td>301</td>
<td>132</td>
<td>300</td>
<td>133</td>
<td>301</td>
<td>132</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>16</td>
<td>346</td>
<td>77.8</td>
<td>346</td>
<td>77.7</td>
<td>346</td>
<td>77.7</td>
<td>346</td>
<td>77.7</td>
<td>346</td>
<td>77.7</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>16</td>
<td>649</td>
<td>96.1</td>
<td>650</td>
<td>96.0</td>
<td>648</td>
<td>96.2</td>
<td>649</td>
<td>96.1</td>
<td>650</td>
<td>96.0</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>16</td>
<td>479</td>
<td>53.0</td>
<td>481</td>
<td>52.9</td>
<td>480</td>
<td>53.0</td>
<td>479</td>
<td>53.0</td>
<td>481</td>
<td>52.9</td>
</tr>
</tbody>
</table>

Results

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit –s unlimited"

Environment Variables Notes

Environment variables set by runcpu before the start of the run:

LD_LIBRARY_PATH = "/home/cpu2017/lib/intel64"

General Notes

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM
memory using Redhat Enterprise Linux 7.5
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3 > /proc/sys/vm/drop_caches
runcpu command invoked through numacl1 i.e.:

(Continued on next page)
General Notes (Continued)

numactl --interleave=all runcpu <etc>

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Settings:
Thermal Configuration: Maximum Cooling
Workload Profile: General Throughput Compute
Memory Patrol Scrubbing: Disabled
LLC Dead Line Allocation: Disabled
LLC Prefetch: Enabled
Enhanced Processor Performance: Enabled
Workload Profile: Custom
Advanced Memory Protection: Advanced ECC Support
Sub-NUMA Clustering: Disabled

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7ed1e6e46a485a0011
running on r120h1m Thu Jul 9 16:14:53 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
 model name : Intel(R) Xeon(R) Bronze 3206R CPU @ 1.90GHz
 2 "physical id"s (chips)
 16 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 8
 siblings : 8
 physical 0: cores 0 1 2 3 4 5 6 7
 physical 1: cores 0 1 2 3 4 5 6 7

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian

(Continued on next page)
NEC Corporation

CPU(s): 16
On-line CPU(s) list: 0-15
Thread(s) per core: 1
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Bronze 3206R CPU @ 1.90GHz
Stepping: 7
CPU MHz: 1900.000
BogoMIPS: 3800.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 11264K
NUMA node0 CPU(s): 0-3,8-11
NUMA node1 CPU(s): 4-7,12-15
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nop1 xtopology nonstop_tsc
aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg
fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes
xsave avx f16c rdrand lahf_lm abm 3dnowprefetch ebpx cat_l3 cdp_l3 invpcid_single
intel_ppin intel_pt ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vmm
flexprority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm
cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw
avx512vl xsaveopt xsaves xsavec xgetbv1 cqm_1lc cqm_occup_l1c cqm_mbm_total cqm_mbm_local
dtherm arat pln pts pkup ospk avx512_vnni md_clear spec_ctrl intel_stibp flush_lld
arch_capabilities

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
physical chip.
 available: 2 nodes (0-1)
 node 0 cpus: 0 1 2 3 8 9 10 11
 node 0 size: 196265 MB
 node 0 free: 191675 MB
 node 1 cpus: 4 5 6 7 12 13 14 15
 node 1 size: 196607 MB
 node 1 free: 192128 MB
 node distances:
 node 0 1

(Continued on next page)
NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

SPECrate®2017_fp_base = 72.1
SPECrate®2017_fp_peak = 74.0

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Tested by: NEC Corporation

Table

<table>
<thead>
<tr>
<th>Platform Notes (Continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0: 10 21</td>
</tr>
<tr>
<td>1: 21 10</td>
</tr>
<tr>
<td>From /proc/meminfo</td>
</tr>
<tr>
<td>MemTotal: 395927628 kB</td>
</tr>
<tr>
<td>HugePages_Total: 0</td>
</tr>
<tr>
<td>Hugepagesize: 2048 kB</td>
</tr>
<tr>
<td>From /etc/release /etc/version</td>
</tr>
<tr>
<td>os-release:</td>
</tr>
<tr>
<td>NAME="Red Hat Enterprise Linux Server"</td>
</tr>
<tr>
<td>VERSION="7.7 (Maipo)"</td>
</tr>
<tr>
<td>ID="rhel"</td>
</tr>
<tr>
<td>ID_LIKE="fedora"</td>
</tr>
<tr>
<td>VARIANT="Server"</td>
</tr>
<tr>
<td>VARIANT_ID="server"</td>
</tr>
<tr>
<td>VERSION_ID="7.7"</td>
</tr>
<tr>
<td>PRETTY_NAME="Red Hat Enterprise Linux Server 7.7 (Maipo)"</td>
</tr>
<tr>
<td>redhat-release: Red Hat Enterprise Linux Server release 7.7 (Maipo)</td>
</tr>
<tr>
<td>system-release: Red Hat Enterprise Linux Server release 7.7 (Maipo)</td>
</tr>
<tr>
<td>system-release-cpe: cpe:/o:redhat:enterprise_linux:7.7:ga:server</td>
</tr>
</tbody>
</table>

uname -a:
Linux r120h1m 3.10.0-1062.1.1.el7.x86_64 #1 SMP Tue Aug 13 18:39:59 UTC 2019 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: Load fences, usercopy/swapps barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Full retpoline, IBPB

run-level 3 Jul 9 16:09

SPEC is set to: /home/cpu2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda3 ext4 908G 179G 683G 21% /

From /sys/devices/virtual/dmi/id
BIOS: NEC U32 03/09/2020
Vendor: NEC
Product: Express5800/R120h-1M

(Continued on next page)
NEC Corporation

SPEC CPU®2017 Floating Point Rate Result

- **CPU2017 License:** 9006
- **Test Sponsor:** NEC Corporation
- **Test Date:** Jul-2020
- **Hardware Availability:** May-2020
- **Tested by:** NEC Corporation
- **Software Availability:** Sep-2019
- **Serial:** JPN0084094

Platform Notes (Continued)

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

- **Memory:**
 - 24x HPE P03050-091 16 GB 2 rank 2933

(End of data from sysinfo program)

Regarding the sysinfo display about the memory speed, the correct configured memory speed is 2400 MT/s. The dmidecode description should be as follows:
- 24x HPE P03050-091 16 GB 2 rank 2933, configured at 2133

Compiler Version Notes

<table>
<thead>
<tr>
<th>Language</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>519.lbm_r(base, peak) 538.imagick_r(base, peak) 544.nab_r(base, peak)</td>
</tr>
<tr>
<td></td>
<td>Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416</td>
</tr>
</tbody>
</table>

Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>Language</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++</td>
<td>508.namd_r(base, peak) 510.parest_r(base, peak)</td>
</tr>
<tr>
<td></td>
<td>Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416</td>
</tr>
</tbody>
</table>

Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>Language</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++, C</td>
<td>511.povray_r(base, peak) 526.blender_r(base, peak)</td>
</tr>
<tr>
<td></td>
<td>Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64, Version 19.0.4.227 Build 20190416</td>
</tr>
</tbody>
</table>

Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>Language</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>C++, C, Fortran</td>
<td>507.cactusBSSN_r(base, peak)</td>
</tr>
</tbody>
</table>

(Continued on next page)
NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

SPECrate®2017_fp_base = 72.1
SPECrate®2017_fp_peak = 74.0

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Tested by: NEC Corporation

Test Date: Jul-2020
Hardware Availability: May-2020
Software Availability: Sep-2019

Compiler Version Notes (Continued)

Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

Base Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

SPECrates®2017_fp_base = 72.1
SPECrates®2017_fp_peak = 74.0

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Tested by: NEC Corporation
Test Date: Jul-2020
Hardware Availability: May-2020
Software Availability: Sep-2019

Base Compiler Invocation (Continued)

Benchmarks using both C and C++:
icpc -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.nanmd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

C++ benchmarks:
xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

Fortran benchmarks:
xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both Fortran and C:
xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

(Continued on next page)
Base Optimization Flags (Continued)

Benchmarks using both C and C++:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

Benchmarks using Fortran, C, and C++:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Peak Compiler Invocation

C benchmarks:
icc -m64 -std=c11

C++ benchmarks:
icpc -m64

Fortran benchmarks:
ifort -m64

Benchmarks using both Fortran and C:
ifort -m64 icc -m64 -std=c11

Benchmarks using both C and C++:
icpc -m64 icc -m64 -std=c11

Benchmarks using Fortran, C, and C++:
icpc -m64 icc -m64 -std=c11 ifort -m64

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

NEC Corporation
Express5800/R120h-1M (Intel Xeon Bronze 3206R)

SPECrate®2017_fp_base = 72.1
SPECrate®2017_fp_peak = 74.0

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Test Date: Jul-2020
Tested by: NEC Corporation
Hardware Availability: May-2020
Software Availability: Sep-2019

Peak Optimization Flags (Continued)

538.imagick_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4

544.nab_r: basepeak = yes

C++ benchmarks:

508.namd_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

510.parest_r: basepeak = yes

Fortran benchmarks:

503.bwaves_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4 -auto
-nostandard-realloc-lhs -align array32byte

549.fotonik3d_r: basepeak = yes

554.roms_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both Fortran and C:

-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4 -auto -nostandard-realloc-lhs
-align array32byte

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=4

526.blender_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch
-ffinite-math-only -qopt-mem-layout-trans=4

Benchmarks using Fortran, C, and C++:

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result
Copyright 2017-2020 Standard Performance Evaluation Corporation

NEC Corporation

Express5800/R120h-1M (Intel Xeon Bronze 3206R)

| SPECrate®2017_fp_base = 72.1 |
| SPECrate®2017_fp_peak = 74.0 |

CPU2017 License: 9006
Test Sponsor: NEC Corporation
Tested by: NEC Corporation

Test Date: Jul-2020
Hardware Availability: May-2020
Software Availability: Sep-2019

Peak Optimization Flags (Continued)

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/NEC-Platform-Settings-V1.2-R120h-RevE.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/NEC-Platform-Settings-V1.2-R120h-RevE.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2020-07-09 03:14:52-0400.
Originally published on 2020-09-01.