SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

<table>
<thead>
<tr>
<th>SPECspeed®2017_int_base</th>
<th>SPECspeed®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Name</td>
<td>AMD EPYC 7713</td>
</tr>
<tr>
<td>Max MHz</td>
<td>3675</td>
</tr>
<tr>
<td>Nominal</td>
<td>2000</td>
</tr>
<tr>
<td>Enabled</td>
<td>128 cores, 2 chips</td>
</tr>
<tr>
<td>Orderable</td>
<td>1, 2 chips</td>
</tr>
<tr>
<td>Cache L1</td>
<td>32 KB I + 32 KB D on chip per core</td>
</tr>
<tr>
<td>L2</td>
<td>512 KB I+D on chip per core</td>
</tr>
<tr>
<td>L3</td>
<td>256 MB I+D on chip per chip, 32 MB shared / 8 cores</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
<tr>
<td>Memory</td>
<td>2 TB (16 x 128 GB 4Rx4 PC4-3200AA-L)</td>
</tr>
<tr>
<td>Storage</td>
<td>1 x 196 GB SATA SSD, RAID 0</td>
</tr>
<tr>
<td>Other</td>
<td>None</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Ubuntu 20.04.1 LTS (x86_64) kernel 5.4.0-56-generic</td>
</tr>
<tr>
<td>Compiler</td>
<td>C/C++/Fortran: Version 3.0.0 of AOCC</td>
</tr>
<tr>
<td>Parallel</td>
<td>Yes</td>
</tr>
<tr>
<td>Firmware</td>
<td>HPE BIOS Version A42 v2.40 02/15/2021 released Mar-2021</td>
</tr>
<tr>
<td>File System</td>
<td>ext4</td>
</tr>
<tr>
<td>System State</td>
<td>Run level 5 (multi-user)</td>
</tr>
<tr>
<td>Base Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Peak Pointers</td>
<td>64-bit</td>
</tr>
<tr>
<td>Other</td>
<td>jemalloc: jemalloc memory allocator library v5.1.0</td>
</tr>
<tr>
<td>Power Management</td>
<td>BIOS set to prefer performance at the cost of additional power usage</td>
</tr>
</tbody>
</table>

Test Information

- **CPU2017 License**: 3
- **Test Sponsor**: HPE
- **Hardware Availability**: Apr-2021
- **Software Availability**: Mar-2021
- **Test Date**: Feb-2021
- **Tested by**: HPE

Benchmark Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Specspeed®2017_int_base</th>
<th>Specspeed®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench_s</td>
<td>128</td>
<td>5.53</td>
<td>11.5</td>
</tr>
<tr>
<td>gcc_s</td>
<td>128</td>
<td>11.5</td>
<td>17.8</td>
</tr>
<tr>
<td>mcf_s</td>
<td>128</td>
<td>7.47</td>
<td>7.49</td>
</tr>
<tr>
<td>omnetpp_s</td>
<td>128</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>xalancbmk_s</td>
<td>128</td>
<td>11.7</td>
<td></td>
</tr>
<tr>
<td>x264_s</td>
<td>128</td>
<td>14.5</td>
<td></td>
</tr>
<tr>
<td>deepsjeng_s</td>
<td>128</td>
<td>5.55</td>
<td></td>
</tr>
<tr>
<td>leela_s</td>
<td>128</td>
<td>4.89</td>
<td></td>
</tr>
<tr>
<td>exchange2_s</td>
<td>128</td>
<td>19.7</td>
<td></td>
</tr>
<tr>
<td>xz_s</td>
<td>128</td>
<td>22.6</td>
<td></td>
</tr>
</tbody>
</table>
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>128</td>
<td>321</td>
<td>5.52</td>
<td>321</td>
<td>5.53</td>
<td>321</td>
<td>5.54</td>
<td>128</td>
<td>321</td>
<td>5.52</td>
<td>321</td>
<td>5.53</td>
<td>321</td>
<td>5.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>128</td>
<td>346</td>
<td>11.5</td>
<td>347</td>
<td>11.5</td>
<td>346</td>
<td>11.5</td>
<td>128</td>
<td>346</td>
<td>11.5</td>
<td>347</td>
<td>11.5</td>
<td>346</td>
<td>11.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>128</td>
<td>265</td>
<td>17.8</td>
<td>266</td>
<td>17.8</td>
<td>266</td>
<td>17.8</td>
<td>128</td>
<td>265</td>
<td>17.8</td>
<td>266</td>
<td>17.8</td>
<td>266</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>128</td>
<td>217</td>
<td>7.51</td>
<td>218</td>
<td>7.47</td>
<td>220</td>
<td>7.40</td>
<td>1</td>
<td>218</td>
<td>7.49</td>
<td>217</td>
<td>7.52</td>
<td>219</td>
<td>7.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>623.xalanchmk_s</td>
<td>128</td>
<td>124</td>
<td>11.5</td>
<td>120</td>
<td>11.8</td>
<td>122</td>
<td>11.7</td>
<td>128</td>
<td>124</td>
<td>11.5</td>
<td>120</td>
<td>11.8</td>
<td>122</td>
<td>11.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>625.x264_s</td>
<td>128</td>
<td>121</td>
<td>14.5</td>
<td>121</td>
<td>14.6</td>
<td>122</td>
<td>14.5</td>
<td>128</td>
<td>121</td>
<td>14.5</td>
<td>121</td>
<td>14.6</td>
<td>122</td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>128</td>
<td>259</td>
<td>5.54</td>
<td>258</td>
<td>5.55</td>
<td>258</td>
<td>5.55</td>
<td>128</td>
<td>259</td>
<td>5.54</td>
<td>258</td>
<td>5.55</td>
<td>258</td>
<td>5.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>641.leela_s</td>
<td>128</td>
<td>351</td>
<td>4.86</td>
<td>349</td>
<td>4.89</td>
<td>349</td>
<td>4.89</td>
<td>128</td>
<td>351</td>
<td>4.86</td>
<td>349</td>
<td>4.89</td>
<td>349</td>
<td>4.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>128</td>
<td>149</td>
<td>19.7</td>
<td>149</td>
<td>19.7</td>
<td>149</td>
<td>19.7</td>
<td>128</td>
<td>149</td>
<td>19.7</td>
<td>149</td>
<td>19.7</td>
<td>149</td>
<td>19.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>657.xz_s</td>
<td>128</td>
<td>273</td>
<td>22.6</td>
<td>274</td>
<td>22.6</td>
<td>274</td>
<td>22.5</td>
<td>128</td>
<td>273</td>
<td>22.6</td>
<td>274</td>
<td>22.6</td>
<td>274</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used. 'numactl' was used to bind copies to the cores. See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit
runcpu command invoked through numacl i.e.:
numactl --interleave=all runcpu <etc>
'echo 8 > /proc/sys/vm/dirty_ratio' run as root to limit dirty cache to 8% of memory.
'echo 1 > /proc/sys/vm/swappiness' run as root to limit swap usage to minimum necessary.
'echo 1 > /proc/sys/vm/zone_reclaim_mode' run as root to free node-local memory and avoid remote memory usage.
'sync; echo 3 > /proc/sys/vm/drop_caches' run as root to reset filesystem caches.
'sysctl -w kernel.randomize_va_space=0' run as root to disable address space layout randomization (ASLR) to reduce run-to-run variability.
'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root to enable...
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

<table>
<thead>
<tr>
<th>SPECspeed®2017_int_base</th>
<th>SPECspeed®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Operating System Notes (Continued)

Transparent Hugepages (THP) for this run.
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled' run as root for peak runs of 628.pop2_s and 638.imagick_s to enable THP only on request.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-127"
LD_LIBRARY_PATH =
"/home/cpu2017n/amd_speed_aocc300_milan_B_lib/64;/home/cpu2017n/amd_speed_aocc300_milan_B_lib/32:"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "128"

Environment variables set by runcpu during the 620.omnetpp_s peak run:
GOMP_CPU_AFFINITY = "0"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7742 CPU + 1TiB Memory using openSUSE 15.2

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v4.8.2 in RHEL 7.4 (No options specified)
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Platform Notes

BIOS Configuration
Workload Profile set to General Peak Frequency Compute
AMD SMT Option set to Disabled
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Last-Level Cache (LLC) as NUMA Node set to Enabled

(Continued on next page)
Platform Notes (Continued)

NUMA memory domains per socket set to One memory domain per socket
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
Infinity Fabric Power Management set to Disabled
Infinity Fabric Performance State set to P0
Power Regulator set to OS Control Mode

Sysinfo program /home/cpu2017n/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on admin Fri Feb 26 05:23:30 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

```
model name : AMD EPYC 7713 64-Core Processor
  2 "physical id" s (chips)
128 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 64
siblings : 64
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
```

From lscpu:

```
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 1
Core(s) per socket: 64
Socket(s): 2
NUMA node(s): 16
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7713 64-Core Processor
Stepping: 1
Frequency boost: enabled
```

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

SPECspeed®2017_int_base = 10.6
SPECspeed®2017_int_peak = 10.6

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

CPU MHz: 1705.169
CPU max MHz: 2000.0000
CPU min MHz: 1500.0000
BogoMIPS: 3992.66
Virtualization: AMD-V
L1d cache: 4 MiB
L1i cache: 4 MiB
L2 cache: 64 MiB
L3 cache: 512 MiB
NUMA node0 CPU(s): 0-7
NUMA node1 CPU(s): 8-15
NUMA node2 CPU(s): 16-23
NUMA node3 CPU(s): 24-31
NUMA node4 CPU(s): 32-39
NUMA node5 CPU(s): 40-47
NUMA node6 CPU(s): 48-55
NUMA node7 CPU(s): 56-63
NUMA node8 CPU(s): 64-71
NUMA node9 CPU(s): 72-79
NUMA node10 CPU(s): 80-87
NUMA node11 CPU(s): 88-95
NUMA node12 CPU(s): 96-103
NUMA node13 CPU(s): 104-111
NUMA node14 CPU(s): 112-119
NUMA node15 CPU(s): 120-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, IBRS_FW, STIBP disabled, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtrunc lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq vmmovq vsxChannel fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr4_legacy abm sse4a misalignsse 3dnowprefetch osvw ibrisk wdt tce topoext perfctr_core perfctr_nb bext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cmn rdt_a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbb_mbm cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbv svm_lock

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

SPECspeed®2017_int_base = 10.6
SPECspeed®2017_int_peak = 10.6

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold
v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

/proc/cpuinfo cache data
 cache size : 512 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
physical chip.
 available: 16 nodes (0-15)
 node 0 cpus: 0 1 2 3 4 5 6 7
 node 0 size: 128776 MB
 node 0 free: 128636 MB
 node 1 cpus: 8 9 10 11 12 13 14 15
 node 1 size: 129022 MB
 node 1 free: 128905 MB
 node 2 cpus: 16 17 18 19 20 21 22 23
 node 2 size: 129022 MB
 node 2 free: 128820 MB
 node 3 cpus: 24 25 26 27 28 29 30 31
 node 3 size: 129022 MB
 node 3 free: 128891 MB
 node 4 cpus: 32 33 34 35 36 37 38 39
 node 4 size: 129022 MB
 node 4 free: 128890 MB
 node 5 cpus: 40 41 42 43 44 45 46 47
 node 5 size: 129022 MB
 node 5 free: 128816 MB
 node 6 cpus: 48 49 50 51 52 53 54 55
 node 6 size: 129022 MB
 node 6 free: 128834 MB
 node 7 cpus: 56 57 58 59 60 61 62 63
 node 7 size: 116909 MB
 node 7 free: 116651 MB
 node 8 cpus: 64 65 66 67 68 69 70 71
 node 8 size: 129022 MB
 node 8 free: 128921 MB
 node 9 cpus: 72 73 74 75 76 77 78 79
 node 9 size: 129022 MB
 node 9 free: 128891 MB
 node 10 cpus: 80 81 82 83 84 85 86 87
 node 10 size: 129022 MB
 node 10 free: 128921 MB
 node 11 cpus: 88 89 90 91 92 93 94 95
 node 11 size: 129022 MB
 node 11 free: 128923 MB
 node 12 cpus: 96 97 98 99 100 101 102 103
 node 12 size: 128997 MB

(Continued on next page)
Platform Notes (Continued)

node 12 free: 128896 MB
node 13 cpus: 104 105 106 107 108 109 110 111
node 13 size: 129022 MB
node 13 free: 128879 MB
node 14 cpus: 112 113 114 115 116 117 118 119
node 14 size: 129022 MB
node 14 free: 128912 MB
node 15 cpus: 120 121 122 123 124 125 126 127
node 15 size: 129016 MB
node 15 free: 128915 MB

node distances:

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

From `/proc/meminfo`

```
MemTotal:       2101212484 kB
HugePages_Total:       0
Hugepagesize:       2048 kB
```

```
/sbin/tuned-adm active
  Current active profile: balanced

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

/usr/bin/lsb_release -d
  Ubuntu 20.04.1 LTS
```

From `/etc/*release` /etc/*version*`
debian_version: bullseye/sid
os-release:
 NAME="Ubuntu"

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

| SPECspeed®2017_int_base = 10.6 |
| SPECspeed®2017_int_peak = 10.6 |

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

VERSION="20.04.1 LTS (Focal Fossa)"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.1 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"

uname -a:
Linux admin 5.4.0-56-generic #62-Ubuntu SMP Mon Nov 23 19:20:19 UTC 2020 x86_64 x86_64
x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit):
Not affected
CVE-2018-3620 (L1 Terminal Fault):
Not affected
Microarchitectural Data Sampling:
Not affected
CVE-2017-5754 (Meltdown):
Not affected
CVE-2018-3639 (Speculative Store Bypass):
Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1):
Mitigation: usercopy/swapsgs barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2):
Mitigation: Full AMD retpoline, IBFB: conditional, IBRS_FW, STIBP: disabled, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling):
Not affected
CVE-2019-11135 (TSX Asynchronous Abort):
Not affected

run-level 5 Feb 26 05:17

SPEC is set to: /home/cpu2017n

Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/ubuntu--vg-ubuntu--lv ext4 196G 50G 137G 27% /

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL365 Gen10 Plus
Product Family: ProLiant
Serial: CN70430NKR

Additional information from dmidecode follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

<table>
<thead>
<tr>
<th>SPECspeed®2017_int_base</th>
<th>10.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_int_peak</td>
<td>10.6</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

16x UNKNOWN M386AAG40AM3-CWE 128 GB 4 rank 3200
16x UNKNOWN NOT AVAILABLE

BIOS:
- **BIOS Vendor:** HPE
- **BIOS Version:** A42
- **BIOS Date:** 02/15/2021
- **BIOS Revision:** 2.40
- **Firmware Revision:** 2.40

(End of data from sysinfo program)

Compiler Version Notes

C

<table>
<thead>
<tr>
<th>600.perlbench_s(base, peak)</th>
<th>602.gcc_s(base, peak)</th>
<th>605.mcf_s(base, peak)</th>
<th>625.x264_s(base, peak)</th>
<th>657.xz_s(base, peak)</th>
</tr>
</thead>
</table>

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C++

<table>
<thead>
<tr>
<th>620.omnetpp_s(base, peak)</th>
<th>623.xalancbmk_s(base, peak)</th>
<th>631.deepsjeng_s(base, peak)</th>
<th>641.leela_s(base, peak)</th>
</tr>
</thead>
</table>

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

Fortran

<table>
<thead>
<tr>
<th>648.exchange2_s(base, peak)</th>
</tr>
</thead>
</table>

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

Fortran

<table>
<thead>
<tr>
<th>648.exchange2_s(base, peak)</th>
</tr>
</thead>
</table>
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

SPECspeed®2017_int_base = 10.6
SPECspeed®2017_int_peak = 10.6

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Base Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Base Portability Flags

600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64
602.gcc_s: -DSPEC_LP64
605.mcf_s: -DSPEC_LP64
620.omnetpp_s: -DSPEC_LP64
623.xalancbmk_s: -DSPEC_LINUX -DSPEC_LP64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -mno-adx -mno-sse4a -Wl,-allow-multiple-definition
-Wl,-mllvm -Wl,-enable-licm-vrp -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -03 -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -mllvm -function-specialize -flv-function-specialization
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -z muldefs
-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc
-lflang -lflangrti

C++ benchmarks:
-m64 -std=c++98 -mno-adx -mno-sse4a
-Wl,-mllvm -Wl,-do-block-reorder=aggressive
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-function-specialize

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen10 Plus
(2.00 GHz, AMD EPYC 7713)

SPECspeed®2017_int_base = 10.6
SPECspeed®2017_int_peak = 10.6

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Base Optimization Flags (Continued)

C++ benchmarks (continued):
- -W1,-mlllvm -W1,-align-all-nofallthru-blocks=6
- -W1,-mlllvm -W1,-reduce-array-computations=3 -O3 -march=znver3
- -fveclib=AMDLIBM -ffast-math -flto -mlllvm -enable-partial-unswitch
- -mlllvm -unroll-threshold=100 -finline-aggressive
- -flv-function-specialization -mlllvm -loop-unswitch-threshold=200000
- -mlllvm -reroll-loops -mlllvm -aggressive-loop-unswitch
- -mlllvm -extra-vectorizer-passes -mlllvm -reduce-array-computations=3
- -mlllvm -global-vectorize-slp=true -mlllvm -convert-pow-exp-to-int=false
- -z muldefs -mlllvm -do-block-reorder=aggressive
- -fvirtual-function-elimination -fvisibility=hidden -DSPEC_OPENMP
- -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang
- -lflangrti

Fortran benchmarks:
- -m64 -mno-adx -mno-sse4a -W1,-mlllvm -W1,-inline-recursion=4
- -W1,-mlllvm -W1,-lsr-in-nested-loop -W1,-mlllvm -W1,-enable-iv-split
- -W1,-mlllvm -W1,-region-vectorize -W1,-mlllvm -W1,-function-specialize
- -W1,-mlllvm -W1,-align-all-nofallthru-blocks=6
- -W1,-mlllvm -W1,-reduce-array-computations=3 -O3 -march=znver3
- -fveclib=AMDLIBM -ffast-math -flto -z muldefs
- -mlllvm -unroll-aggressive -mlllvm -unroll-threshold=150 -DSPEC_OPENMP
- -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang
- -lflangrti

Base Other Flags

C benchmarks:
- -Wno-unused-command-line-argument -Wno-return-type

C++ benchmarks:
- -Wno-unused-command-line-argument -Wno-return-type

Fortran benchmarks:
- -Wno-return-type

Peak Compiler Invocation

C benchmarks:
clang

(Continued on next page)
Peak Compiler Invocation (Continued)

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
600.perlbench_s: basepeak = yes
602.gcc_s: basepeak = yes
605.mcf_s: basepeak = yes
625.x264_s: basepeak = yes
657.xz_s: basepeak = yes

C++ benchmarks:
620.omnetpp_s: -m64 -std=c++98 -mno-adx -mno-sse4a
- W1, -mlvm -W1, -do-block-reorder=aggressive
- W1, -mlvm -W1, -function-specialize
- W1, -mlvm -W1, -align-all-nofallthru-blocks=6
- W1, -mlvm -W1, -reduce-array-computations=3 -Ofast
- march=znver3 -fveclib=AMDLIBM -ffast-math -ftlo
- finline-aggressive -mlvm -unroll-threshold=100
- flv-function-specialization -mlvm -enable-lcm-vrp
- mlvm -reroll-loops -mlvm -aggressive-loop-unswitch
- mlvm -reduce-array-computations=3
- mlvm -global-vectorize-slp=true
- mlvm -do-block-reorder=aggressive
- fvirtual-function-elimination -fvisibility=hidden
- DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm
- ljemalloc -lflang

(Continued on next page)
Peak Optimization Flags (Continued)

- 623.xalancbmk_s: basepeak = yes
- 631.deepsjeng_s: basepeak = yes
- 641.leela_s: basepeak = yes

Fortran benchmarks:
- 648.exchange2_s: basepeak = yes

Peak Other Flags

C benchmarks:
- -Wno-unused-command-line-argument -Wno-return-type

C++ benchmarks:
- -Wno-unused-command-line-argument -Wno-return-type

Fortran benchmarks:
- -Wno-return-type

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.xml