SPEC CPU®2017 Integer Speed Result

Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPECspeed®2017_int_base = 10.9

SPECspeed®2017_int_peak = 11.3

<table>
<thead>
<tr>
<th>Threads</th>
<th>SPECspeed®2017_int_base (10.9)</th>
<th>SPECspeed®2017_int_peak (11.3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.56</td>
<td>17.5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6.07</td>
<td>12.3</td>
</tr>
<tr>
<td></td>
<td>6.57</td>
<td>12.4</td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td>19.5</td>
</tr>
<tr>
<td></td>
<td>20.9</td>
<td></td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** AMD Ryzen Threadripper PRO 3945WX
- **Max MHz:** 4300
- **Nominal:** 4000
- **Enabled:** 12 cores, 1 chip, 2 threads/core
- **Orderable:** 1 chip
- **Cache L1:** 32 KB I+ 32 KB D on chip per core
- **L2:** 512 KB I+D on chip per core
- **L3:** 64 MB I+D on chip per chip, 16 MB shared / 3 cores
- **Other:** None
- **Memory:** 512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R)
- **Storage:** 1 x 300 GB SATA III, 7200 RPM
- **Other:** None

Software

- **OS:** Ubuntu 20.04.1 LTS
- **Kernel:** 5.4.0-60-generic
- **Compiler:** C/C++/Fortran: Version 2.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** Version 5.17 released Feb-2021
- **File System:** ext4
- **System State:** Run level 5 (multi-user without GUI)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 32/64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.1.0
- **Power Management:** BIOS set to prefer performance at the cost of additional power usage.
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>12</td>
<td>292</td>
<td>6.07</td>
<td>292</td>
<td>6.08</td>
<td>295</td>
<td>6.02</td>
<td>1</td>
<td>266</td>
<td>6.67</td>
<td>265</td>
<td>6.69</td>
<td>267</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>12</td>
<td>322</td>
<td>12.4</td>
<td>324</td>
<td>12.3</td>
<td>323</td>
<td>12.3</td>
<td>1</td>
<td>321</td>
<td>12.4</td>
<td>321</td>
<td>12.4</td>
<td>321</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>12</td>
<td>241</td>
<td>19.6</td>
<td>242</td>
<td>19.5</td>
<td>242</td>
<td>19.5</td>
<td>1</td>
<td>226</td>
<td>20.9</td>
<td>226</td>
<td>20.9</td>
<td>226</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>12</td>
<td>264</td>
<td>6.18</td>
<td>264</td>
<td>6.18</td>
<td>262</td>
<td>6.22</td>
<td>1</td>
<td>263</td>
<td>6.18</td>
<td>264</td>
<td>6.18</td>
<td>263</td>
</tr>
<tr>
<td>623.xalanchmk_s</td>
<td>12</td>
<td>116</td>
<td>12.2</td>
<td>114</td>
<td>12.4</td>
<td>115</td>
<td>12.4</td>
<td>1</td>
<td>107</td>
<td>13.3</td>
<td>106</td>
<td>13.4</td>
<td>107</td>
</tr>
<tr>
<td>625.x264_s</td>
<td>12</td>
<td>108</td>
<td>16.3</td>
<td>107</td>
<td>16.5</td>
<td>107</td>
<td>16.4</td>
<td>1</td>
<td>105</td>
<td>16.9</td>
<td>105</td>
<td>16.8</td>
<td>105</td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>12</td>
<td>228</td>
<td>6.30</td>
<td>228</td>
<td>6.27</td>
<td>228</td>
<td>6.30</td>
<td>1</td>
<td>223</td>
<td>6.43</td>
<td>223</td>
<td>6.43</td>
<td>223</td>
</tr>
<tr>
<td>641.leela_s</td>
<td>12</td>
<td>307</td>
<td>5.56</td>
<td>306</td>
<td>5.57</td>
<td>307</td>
<td>5.56</td>
<td>12</td>
<td>307</td>
<td>5.56</td>
<td>306</td>
<td>5.57</td>
<td>307</td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>12</td>
<td>140</td>
<td>21.0</td>
<td>140</td>
<td>21.0</td>
<td>140</td>
<td>21.0</td>
<td>1</td>
<td>135</td>
<td>21.6</td>
<td>135</td>
<td>21.8</td>
<td>135</td>
</tr>
<tr>
<td>657.xz_s</td>
<td>12</td>
<td>354</td>
<td>17.5</td>
<td>354</td>
<td>17.5</td>
<td>354</td>
<td>17.5</td>
<td>12</td>
<td>354</td>
<td>17.5</td>
<td>354</td>
<td>17.5</td>
<td>354</td>
</tr>
</tbody>
</table>

SPECspeed2017_int_base = 10.9
SPECspeed2017_int_peak = 11.3

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at
http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

Set dirty_ratio=8 to limit dirty cache to 8% of memory
Set swappiness=1 to swap only if necessary
Set zone_reclaim_mode=1 to free local node memory and avoid remote memory sync then drop_caches=3 to reset caches before invoking runcpu

dirty_ratio, swappiness, zone_reclaim_mode and drop_caches were all set using privileged echo (e.g. echo 1 > /proc/sys/vm/swappiness).

Transparent huge pages set to 'always' for this run (OS default)
Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-23"
LD_LIBRARY_PATH = "/home/cpu2017/amd_speed_aocc200_rome_C_lib/64;/home/cpu2017/amd_speed_aocc200_rome_C_lib/32:"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "24"

Environment variables set by runcpu during the 600.perlbench_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 602.gcc_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 605.mcf_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 620.omnetpp_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 623.xalancbmk_s peak run:
GOMP_CPU_AFFINITY = "0"
OMP_STACKSIZE = "128M"

Environment variables set by runcpu during the 625.x264_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 631.deepsjeng_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 648.exchange2_s peak run:
GOMP_CPU_AFFINITY = "0"

Environment variables set by runcpu during the 657.xz_s peak run:
GOMP_CPU_AFFINITY = "0-11"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7601 CPU + 512GB Memory using Fedora 26

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

(Continued on next page)
Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPECspeed®2017_int_base = 10.9
SPECspeed®2017_int_peak = 11.3

General Notes (Continued)

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v9.1.0 in Ubuntu 19.04 with -O3 -znver2 -flto
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Platform Notes

BIOS Settings:
Determinism Control = Manual
Determinism Slider = Power
APBDIS = 1
NUMA Nodes Per Socket = NPS2

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on m12swa-01 Fri Feb 19 23:29:11 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
 model name : AMD Ryzen Threadripper PRO 3945WX 12-Cores
 1 "physical id"s (chips)
 24 "processors"
 cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 cpu cores : 12
 siblings : 24
 physical 0: cores 0 1 2 4 5 6 8 9 10 12 13 14

From lscpu:
 Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Byte Order: Little Endian
 Address sizes: 43 bits physical, 48 bits virtual
 CPU(s): 24
 On-line CPU(s) list: 0-23
 Thread(s) per core: 2
 Core(s) per socket: 12
 Socket(s): 1

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

CPU2017 License: 001176
Test Sponsor: Supermicro
Tested by: Supermicro

Platform Notes (Continued)

NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD Ryzen Threadripper PRO 3945WX 12-Cores
Stepping: 0
Frequency boost: enabled
CPU MHz: 3600.745
CPU max MHz: 4000.0000
CPU min MHz: 2200.0000
BogoMIPS: 7999.97
Virtualization: AMD-V
L1d cache: 384 KiB
L1i cache: 384 KiB
L2 cache: 6 MiB
L3 cache: 64 MiB
NUMA node0 CPU(s): 0-5,12-17
NUMA node1 CPU(s): 6-11,18-23
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, STIBP conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Txz async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpec1b rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bptxt perfctr_llc mwaitx cpb cat_13 cdp_l3 hw_pstate sme ssbd mba sev ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 cmqm rdt_a rdseed adx smap clflushopt clwb sha ni xsavdept xsaveopt xsavec xsavecc qcm_llc qcm_occup_llc qcm_mbm_total qcm_mbm_local czerotier xsaveerpt wbnoiwvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassistors pausefilter pfthreshold avic v_vmsave_vmload vgif umip rdpid overflow_recov succor smca

/proc/cpuinfo cache data
cache size: 512 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPECspeed®2017_int_base = 10.9
SPECspeed®2017_int_peak = 11.3

CPU2017 License: 001176
Test Date: Feb-2021
Test Sponsor: Supermicro
Hardware Availability: Mar-2021
Tested by: Supermicro
Software Availability: Jan-2021

Platform Notes (Continued)

- physical chip.
 - available: 2 nodes (0-1)
 - node 0 cpus: 0 1 2 3 4 5 12 13 14 15 16 17
 - node 0 size: 257900 MB
 - node 0 free: 257300 MB
 - node 1 cpus: 6 7 8 9 10 11 18 19 20 21 22 23
 - node 1 size: 257996 MB
 - node 1 free: 257397 MB

- node distances:
 - node 0 1
 - 0: 10 12
 - 1: 12 10

From /proc/meminfo
- MemTotal: 528277988 kB
- HugePages_Total: 0
- Hugepagesize: 2048 kB

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

/usr/bin/lsb_release -d
- Ubuntu 20.04.1 LTS

From /etc/*release* /etc/*version*
- debian_version: bullseye/sid
- os-release:
 - NAME="Ubuntu"
 - VERSION="20.04.1 LTS (Focal Fossa)"
 - ID=ubuntu
 - ID_LIKE=debian
 - PRETTY_NAME="Ubuntu 20.04.1 LTS"
 - VERSION_ID="20.04"
 - HOME_URL="https://www.ubuntu.com/"
 - SUPPORT_URL="https://help.ubuntu.com/"

uname -a:
- Linux m12swa-01 5.4.0-60-generic #67-Ubuntu SMP Tue Jan 5 18:31:36 UTC 2021 x86_64
 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

- CVE-2018-12207 (iTLB Multihit): Not affected
- CVE-2018-3620 (L1 Terminal Fault): Not affected
- Microarchitectural Data Sampling: Not affected
- CVE-2017-5754 (Meltdown): Not affected
- CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store

(Continued on next page)
Platform Notes (Continued)

CVE-2017-5753 (Spectre variant 1):
Bypass disabled via prctl and seccomp
Mitigation: usercopy/swapsqgs barriers and __user pointer sanitization

CVE-2017-5715 (Spectre variant 2):
Mitigation: Full AMD retpoline, IBPB: conditional, STIBP: conditional, RSB filling

CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 5 Feb 19 15:57

Compiler Version Notes

```plaintext
==============================================================================
C       | 600.perlbench_s(base, peak) 602.gcc_s(base, peak) 605.mcf_s(base, peak) 625.x264_s(base, peak) 657.xz_s(base, peak)
==============================================================================
AOCC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins AOCC_2_0_0-Build#191) (based on LLVM AOCC.LLVM.2.0.0.B191.2019_07_19)
```
SPEC CPU®2017 Integer Speed Result

Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

<table>
<thead>
<tr>
<th>SPECspeed®2017_int_base = 10.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_int_peak = 11.3</td>
</tr>
</tbody>
</table>

CPU2017 License: 001176

Test Sponsor: Supermicro

Tested by: Supermicro

Test Date: Feb-2021

Hardware Availability: Mar-2021

Software Availability: Jan-2021

Compiler Version Notes (Continued)

Target: x86_64-unknown-linux-gnu

Thread model: posix

InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 623.xalancbmk_s(peak)

AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
Target: i386-unknown-linux-gnu

Thread model: posix

InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 620.omnetpp_s(base, peak) 623.xalancbmk_s(base)

631.deepsjeng_s(base, peak) 641.leela_s(base, peak)

AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
Target: x86_64-unknown-linux-gnu

Thread model: posix

InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 623.xalancbmk_s(peak)

AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
Target: i386-unknown-linux-gnu

Thread model: posix

InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

C++ | 620.omnetpp_s(base, peak) 623.xalancbmk_s(base)

631.deepsjeng_s(base, peak) 641.leela_s(base, peak)

AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
AOCCLLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
Target: x86_64-unknown-linux-gnu

Thread model: posix

InstalledDir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

(Continued on next page)
Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPEC®2017 int_base = 10.9
SPEC®2017 int_peak = 11.3

CPU2017 License: 001176
Test Sponsor: Supermicro
Tested by: Supermicro

Compiler Version Notes (Continued)

Fortran | 648.exchange2_s(base, peak)

A0CC.LLVM.2.0.0.B191.2019_07_19 clang version 8.0.0 (CLANG: Jenkins
A0CC_2_0_0-Build#191) (based on LLVM A0CC.LLVM.2.0.0.B191.2019_07_19)
Target: x86_64-unknown-linux-gnu
Thread model: posix
Installed Dir: /sppo/dev/compilers/aocc-compiler-2.0.0/bin

Base Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Base Portability Flags

600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64
602.gcc_s: -DSPEC_LP64
605.mcf_s: -DSPEC_LP64
620.omnetpp_s: -DSPEC_LP64
623.xalancbmk_s: -DSPEC_LINUX -DSPEC_LP64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-ffast-math
-march=znver2
-struct-layout=3

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPECspeed®2017_int_base = 10.9
SPECspeed®2017_int_peak = 11.3

CPU2017 License: 001176
Test Sponsor: Supermicro
Test Date: Feb-2021
Tested by: Supermicro
Hardware Availability: Mar-2021
Software Availability: Jan-2021

Base Optimization Flags (Continued)

C benchmarks (continued):
- fremap-arrays -mllvm -function-specialize -mllvm -enable-gvn-hoist
- mllvm -reduce-array-computations=3 -mllvm -global-vectorize-slp
- mllvm -vector-library=LIBMVEC -mllvm -inline-threshold=1000
- flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp
- fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
- lflang

C++ benchmarks:
- flto -Wl,-mllvm -Wl,-function-specialize
- Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
- Wl,-mllvm -Wl,-reduce-array-computations=3
- Wl,-mllvm -Wl,-suppress-fmas -O3 -ffast-math -march=znver2
- mllvm -loop-unswitch-threshold=200000 -mllvm -vector-library=LIBMVEC
- mllvm -unroll-threshold=100 -flv-function-specialization
- mllvm -enable-partial-unswitch -z muldefs -DSPEC_OPENMP -fopenmp
- fopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc
- lflang

Fortran benchmarks:
- flto -Wl,-mllvm -Wl,-function-specialize
- Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-vector-library=LIBMVEC
- Wl,-mllvm -Wl,-reduce-array-computations=3 -ffast-math
- Wl,-mllvm -Wl,-inline-recursion=4 -Wl,-mllvm -Wl,-lsr-in-nested-loop
- Wl,-mllvm -Wl,-enable-iv-split -O3 -march=znver2 -funroll-loops
- Mrecursive -mllvm -vector-library=LIBMVEC -z muldefs
- mllvm -disable-indvar-simplify -mllvm -unroll-aggressive
- mllvm -unroll-threshold=150 -DSPEC_OPENMP -fopenmp -fopenmp=libomp
- lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang

Base Other Flags

C benchmarks:
-Wno-return-type

C++ benchmarks:
-Wno-return-type

Fortran benchmarks:
-Wno-return-type
SPEC CPU®2017 Integer Speed Result

Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPECspeed®2017_int_base = 10.9
SPECspeed®2017_int_peak = 11.3

CPU2017 License: 001176
Test Sponsor: Supermicro
Tested by: Supermicro

Peak Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Peak Portability Flags

600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64
602.gcc_s: -DSPEC_LP64
605.mcf_s: -DSPEC_LP64
620.omnetpp_s: -DSPEC_LP64
623.xalancbmk_s: -DSPEC_LINUX -D_FILE_OFFSET_BITS=64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:
600.perlbench_s: -flto -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-vector-library=LIBMVEC
-Wl,-mllvm -Wl,-reduce-array-computations=3
-fprofile-instr-generate(pass 1)
-fprofile-instr-use(pass 2) -Ofast -march=znver2
-mno-sse4a -fstruct-layout=5
-mllvm -vectorize-memory-aggressively
-mllvm -function-specialize -mllvm -enable-gvn-hoist
-mllvm -unroll-threshold=50 -fremap-arrays
-mllvm -vector-library=LIBMVEC
-mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp -mllvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -fopenmp
-lmvec -lamdlibm -fopenmp=libomp -lomp -lpthread -ldl
-ljemalloc -lflang

(Continued on next page)
Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

| SPECspeed®2017_int_base = 10.9 |
| SPECspeed®2017_int_peak = 11.3 |

CPU2017 License: 001176
Test Sponsor: Supermicro
Tested by: Supermicro

Peak Optimization Flags (Continued)

602.gcc_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-slp -mlllvm -inline-threshold=1000
-flv-function-specialization -z muldefs -DSPEC_OPENMP
-fopenmp -fgnu89-inline -fopenmp=libomp -lomp -lpthread
-ldl -ljemalloc

605.mcf_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-slp -mlllvm -inline-threshold=1000
-flv-function-specialization -z muldefs -DSPEC_OPENMP -fopenmp
-lmvec -lamdlibm -fopenmp=libomp -lomp -lpthread -ldl
-ljemalloc -lflang

625.x264_s: Same as 600.perlbench_s

657.xz_s: -flto -Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-vector-library=LIBMVEC
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver2 -mno-sse4a -fstruct-layout=5
-mlllvm -vectorize-memory-aggressively
-mlllvm -function-specialize -mlllvm -enable-gvn-hoist
-mlllvm -unroll-threshold=50 -fremap-arrays
-mlllvm -vector-library=LIBMVEC
-mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-slp -mlllvm -inline-threshold=1000
-flv-function-specialization -DSPEC_OPENMP -fopenmp

(Continued on next page)
Peak Optimization Flags (Continued)

657.xz_s (continued):
-ffopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -lflang

C++ benchmarks:

620.omnetpp_s: -flto -W1,-mlllvm -W1,-function-specialize
-mlllvm -W1,-region-vectorize
-mlllvm -W1,-vector-library=LIBMVEC
-march=znver2 -flv-function-specialization
-mlllvm -unroll-threshold=100
-mlllvm -enable-partial-unswitch
-mlllvm -loop-unswitch-threshold=200000
-mlllvm -vector-library=LIBMVEC
-mlllvm -inline-threshold=1000 -DSPEC_OPENMP -fopenmp
-ffopenmp=libomp -lomp -lpthread -ldl -lmvec -lamdlibm
-ljemalloc -lflang

623.xalancbmk_s: -m32 -flto -W1,-mlllvm -W1,-function-specialize
-mlllvm -W1,-region-vectorize
-mlllvm -W1,-vector-library=LIBMVEC
-march=znver2 -flv-function-specialization
-mlllvm -unroll-threshold=100
-mlllvm -enable-partial-unswitch
-mlllvm -loop-unswitch-threshold=200000
-mlllvm -vector-library=LIBMVEC
-mlllvm -inline-threshold=1000 -DSPEC_OPENMP -fopenmp
-ffopenmp=libomp -lomp -lpthread -ldl -ljemalloc

631.deepsjeng_s: Same as 620.omnetpp_s

641.leela_s: basepeak = yes

Fortran benchmarks:
-fflto -W1,-mlllvm -W1,-function-specialize
-mlllvm -W1,-region-vectorize -mlllvm -W1,-vector-library=LIBMVEC
-mlllvm -W1,-reduce-array-computations=3 -ffast-math
-mlllvm -W1,-inline-recursion=4 -W1,-mlllvm -W1,-lsr-in-nested-loop
-mlllvm -W1,-enable-iv-split -O3 -march=znver2 -funroll-loops
-Mrecursive -mlllvm -vector-library=LIBMVEC
-mlllvm -disable-indvar-simplify -mlllvm -unroll-aggressive
-mlllvm -unroll-threshold=150 -DSPEC_OPENMP -fopenmp -fopenmp=libomp
-lomp -lpthread -ldl -lmvec -lamdlibm -ljemalloc -lflang
Supermicro
A+ SuperWorkstation 5014A-TT
(M12SWA-TF, AMD Ryzen Threadripper PRO 3945WX)

SPEC®2017_int_base = 10.9
SPEC®2017_int_peak = 11.3

C benchmarks:
-Wno-return-type

C++ benchmarks (except as noted below):
-Wno-return-type

623.xalanchmk_s: -Wno-return-type
-L/sppo/dev/cpu2017/v110/amd_speed_aocc200_rome_C_lib/32

Fortran benchmarks:
-Wno-return-type

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Supermicro-Platform-Settings-V1.2-Rome-revC.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.5 on 2021-02-19 18:29:11-0500.
Originally published on 2021-04-27.