SPEC CPU®2017 Floating Point Speed Result

Hardware

- **CPU Name:** AMD EPYC 7513
- **Max MHz:** 3650
- **Nominal:** 2600
- **Enabled:** 32 cores, 1 chip, 2 threads/core
- **Orderable:** 1 chip
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 512 KB I+D on chip per core
- **L3:** 128 MB I+D on chip per chip, 32 MB shared / 8 cores
- **Other:** None
- **Memory:** 1 TB (8 × 128 GB 4Rx4 PC4-3200AA-L)
- **Storage:** 1 x 480 GB SAS SSD, RAID 0
- **Other:** None

Software

- **OS:** Ubuntu 20.04.1 LTS (x86_64)
- **Kernel:** 5.4.0-56-generic
- **Compiler:** C/C++/Fortran: Version 3.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** HPE BIOS Version A43 v2.42 04/15/2021 released Apr-2021
- **File System:** ext4
- **System State:** Run level 5 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.1.0
- **Power Management:** BIOS set to prefer performance at the cost of additional power usage

Test Data

- **Test Sponsor:** HPE
- **Hardware Availability:** Jun-2021
- **Software Availability:** Mar-2021
- **Test Date:** Apr-2021

Results

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>SPECspeed®2017_fp_base</th>
<th>SPECspeed®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>644.nab_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>654.roms_s</td>
<td>32</td>
<td>143</td>
<td>146</td>
</tr>
</tbody>
</table>

Notes

- **CPU2017 License:** 3
- **Tested by:** HPE

Copyright 2017-2021 Standard Performance Evaluation Corporation
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>603.bwaves_s</td>
<td>32</td>
<td>169</td>
<td>349</td>
<td>169</td>
<td>349</td>
<td>169</td>
<td>348</td>
<td>64</td>
<td>169</td>
<td>349</td>
<td>169</td>
<td>349</td>
<td>64</td>
<td>169</td>
<td>349</td>
<td>169</td>
<td>349</td>
<td>169</td>
<td></td>
<td></td>
</tr>
<tr>
<td>607.cactuBSSN_s</td>
<td>32</td>
<td>76.8</td>
<td>217</td>
<td>77.1</td>
<td>216</td>
<td>76.9</td>
<td>217</td>
<td>32</td>
<td>76.8</td>
<td>217</td>
<td>77.1</td>
<td>216</td>
<td>76.9</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>619.lbm_s</td>
<td>32</td>
<td>76.4</td>
<td>68.5</td>
<td>76.5</td>
<td>68.5</td>
<td>76.4</td>
<td>68.5</td>
<td>32</td>
<td>76.4</td>
<td>68.5</td>
<td>76.5</td>
<td>68.5</td>
<td>76.4</td>
<td>68.5</td>
<td>76.5</td>
<td>68.5</td>
<td>76.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>621.wrf_s</td>
<td>32</td>
<td>65.5</td>
<td>202</td>
<td>65.1</td>
<td>203</td>
<td>65.1</td>
<td>203</td>
<td>32</td>
<td>64.7</td>
<td>205</td>
<td>64.8</td>
<td>204</td>
<td>64.8</td>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>627.cam4_s</td>
<td>32</td>
<td>88.2</td>
<td>100</td>
<td>88.0</td>
<td>101</td>
<td>88.1</td>
<td>101</td>
<td>32</td>
<td>88.2</td>
<td>100</td>
<td>88.0</td>
<td>101</td>
<td>88.1</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>628.pop2_s</td>
<td>32</td>
<td>132</td>
<td>89.8</td>
<td>132</td>
<td>89.9</td>
<td>133</td>
<td>89.5</td>
<td>32</td>
<td>132</td>
<td>89.8</td>
<td>133</td>
<td>89.9</td>
<td>133</td>
<td>89.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>638.imagick_s</td>
<td>32</td>
<td>84.7</td>
<td>170</td>
<td>85.3</td>
<td>169</td>
<td>84.2</td>
<td>171</td>
<td>32</td>
<td>84.7</td>
<td>170</td>
<td>85.3</td>
<td>169</td>
<td>84.2</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>644.nab_s</td>
<td>32</td>
<td>70.8</td>
<td>247</td>
<td>70.8</td>
<td>247</td>
<td>70.8</td>
<td>247</td>
<td>32</td>
<td>71.6</td>
<td>283</td>
<td>61.4</td>
<td>284</td>
<td>61.4</td>
<td>284</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>649.fotonik3d_s</td>
<td>32</td>
<td>135</td>
<td>67.4</td>
<td>135</td>
<td>67.4</td>
<td>135</td>
<td>67.5</td>
<td>32</td>
<td>135</td>
<td>67.4</td>
<td>135</td>
<td>67.4</td>
<td>135</td>
<td>67.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>654.roms_s</td>
<td>32</td>
<td>119</td>
<td>133</td>
<td>118</td>
<td>134</td>
<td>118</td>
<td>134</td>
<td>32</td>
<td>108</td>
<td>146</td>
<td>108</td>
<td>146</td>
<td>108</td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

The AMD64 AOCC Compiler Suite is available at
http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.

Operating System Notes

- 'ulimit -s unlimited' was used to set environment stack size
- 'ulimit -l 2097152' was used to set environment locked pages in memory limit
- runcpu command invoked through numactl i.e.:
 numactl --interleave=all runcpu <etc>

 - 'echo 8 > /proc/sys/vm/dirty_ratio' run as root to limit dirty cache to 8% of memory.
 - 'echo 1 > /proc/sys/vm/swappiness' run as root to limit swap usage to minimum necessary.
 - 'echo 1 > /proc/sys/vm/zone_reclaim_mode' run as root to free node-local memory and avoid remote memory usage.
 - 'sync; echo 3 > /proc/sys/vm/drop_caches' run as root to reset filesystem caches.
 - 'sysctl -w kernel.randomize_va_space=0' run as root to disable address space layout randomization (ASLR) to reduce run-to-run variability.

To enable Transparent Hugepages (THP) for all allocations,
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>146</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Date: Apr-2021
Test Sponsor: HPE
Hardware Availability: Jun-2021
Tested by: HPE
Software Availability: Mar-2021

Operating System Notes (Continued)

'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and
'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.
To enable THP only on request for peak runs of 628.pop2_s, and 638.imagick_s,
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled' run as root.
To disable THP for peak runs of 627.cam4_s, 644.nab_s, 649.fotonik3d_s, and 654.roms_s,
'echo never > /sys/kernel/mm/transparent_hugepage/enabled' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:

GOMP_CPU_AFFINITY = "0-63"
LD_LIBRARY_PATH =
"/home/SPEC_CPU2017/cpu2017/amd_speed_aocc300_milan_B_lib/64;/home/SPEC_CPU2017/cpu2017/amd_speed_aocc300_milan_B_lib/32:"
MALLOC_CONF = "retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "64"

Environment variables set by runcpu during the 603.bwaves_s peak run:

GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"

Environment variables set by runcpu during the 621.wrf_s peak run:

GOMP_CPU_AFFINITY = "0-31"

Environment variables set by runcpu during the 644.nab_s peak run:

GOMP_CPU_AFFINITY = "0 32 1 33 2 34 3 35 4 36 5 37 6 38 7 39 8 40 9 41 10 42 11 43 12 44 13 45 14 46 15 47 16 48 17 49 18 50 19 51 20 52 21 53 22 54 23 55 24 56 25 57 26 58 27 59 28 60 29 61 30 62 31 63"

Environment variables set by runcpu during the 654.roms_s peak run:

GOMP_CPU_AFFINITY = "0-31"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7742 CPU + 1TiB Memory using openSUSE 15.2

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

<table>
<thead>
<tr>
<th>SPECspeed®2017_fp_base</th>
<th>143</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECspeed®2017_fp_peak</td>
<td>146</td>
</tr>
</tbody>
</table>

Test Sponsor: HPE
Hardware Availability: Jun-2021
Software Availability: Mar-2021
Test Date: Apr-2021
Tested by: HPE

General Notes (Continued)

Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v4.8.2 in RHEL 7.4
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon May 24 12:36:50 EDT 2021
Submission: cpu2017-20210524-26411.sub

Platform Notes

- BIOS Configuration
- Workload Profile set to General Peak Frequency Compute
- Thermal Configuration set to Maximum Cooling
- Determinism Control set to Manual
- Performance Determinism set to Power Deterministic
- Last-Level Cache (LLC) as NUMA Node set to Enabled
- NUMA memory domains per socket set to One memory domain per socket
- Infinity Fabric Power Management set to Disabled
- Infinity Fabric Performance State set to P0
- Workload Profile set to Custom
- Power Regulator set to OS Control Mode

Sysinfo program /home/SPEC_CPU2017/cpu2017/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on admin Thu Apr 2 05:44:30 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo

- model name : AMD EPYC 7513 32-Core Processor
- 1 "physical id"s (chips)
- 64 "processors"
- cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
 - cpu cores : 32
 - siblings : 64
 - physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

From lscpu:

- Architecture: x86_64

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPEC®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Platform Notes (Continued)

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7513 32-Core Processor
Stepping: 1
Frequency boost: enabled
CPU MHz: 1796.230
CPU max MHz: 2600.0000
CPU min MHz: 1500.0000
BogoMIPS: 5190.05
Virtualization: AMD-V
L1d cache: 1 MiB
L1i cache: 1 MiB
L2 cache: 16 MiB
L3 cache: 128 MiB
NUMA node0 CPU(s): 0-7,32-39
NUMA node1 CPU(s): 8-15,40-47
NUMA node2 CPU(s): 16-23,48-55
NUMA node3 CPU(s): 24-31,56-63
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBFB conditional, IBRS_FW, STIBP always-on, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdel1gb rdtsscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osuw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpxext perfctr_l1c mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECspeed®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Platform Notes (Continued)

ibpb stibp vmmcall fsqgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap
cflushopt clwb sha_ni xsaveopt xsaves xgetbv1 xsaves cqm_llc cqm_occup_llc
cqm_mbb_total cqm_mbb_local clzero irperf xsaverptr wumbovd arat npt lbrv svm_lock
nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold
v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recover succor smca

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a
physical chip.
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 32 33 34 35 36 37 38 39
node 0 size: 257774 MB
node 0 free: 257225 MB
node 1 cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
node 1 size: 258044 MB
node 1 free: 257795 MB
node 2 cpus: 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
node 2 size: 258044 MB
node 2 free: 257796 MB
node 3 cpus: 24 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63
node 3 size: 245932 MB
node 3 free: 245279 MB
node distances:
node 0 1 2 3
0: 10 11 11 11
1: 11 10 11 11
2: 11 11 10 11
3: 11 11 10 11

From /proc/meminfo
MemTotal: 1044270940 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has
performance

/usr/bin/lsb_release -d
Ubuntu 20.04.1 LTS

From /etc/*release* /etc/*version*
debian_version: bullseye/sid
os-release:
 NAME="Ubuntu"
 VERSION="20.04.1 LTS (Focal Fossa)"

(Continued on next page)
Platform Notes (Continued)

ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 20.04.1 LTS"
VERSION_ID="20.04"
HOME_URL="https://www.ubuntu.com/
SUPPORT_URL="https://help.ubuntu.com/

uname -a:
Linux admin 5.4.0-56-generic #62-Ubuntu SMP Mon Nov 23 19:20:19 UTC 2020 x86_64 x86_64
x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store
Bypass disabled via prctl and
seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swapgs
barriers and __user pointer
sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Full AMD retpoline,
IBPB: conditional, IBRS_FW, STIBP:
always-on, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 5 Apr 1 17:23

SPEC is set to: /home/SPEC_CPU2017/cpu2017

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/ubuntu--vg-ubuntu--lv</td>
<td>ext4</td>
<td>196G</td>
<td>83G</td>
<td>104G</td>
<td>45%</td>
<td>/</td>
</tr>
</tbody>
</table>

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL345 Gen10 Plus
Product Family: ProLiant
Serial: J20APP000K

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are frequent
changes to hardware, firmware, and the "DMTF SMBIOS" standard.
Memory:
8x Samsung M386AAG40AM3-CWE 128 GB 4 rank 3200

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECspeed®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

8x UNKNOWN NOT AVAILABLE

BIOS:
 BIOS Vendor: HPE
 BIOS Version: A43
 BIOS Date: 04/15/2021
 BIOS Revision: 2.42
 Firmware Revision: 2.40

(End of data from sysinfo program)

Compiler Version Notes

==
C | 619.lbm_s(base, peak) 638.imagick_s(base, peak)
 | 644.nab_s(base, peak)
==
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on
LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

==
C++, C, Fortran | 607.cactuBSSN_s(base, peak)
==
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on
LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on
LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin
AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on
LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

==
Fortran | 603.bwaves_s(base, peak) 649.fotonik3d_s(base, peak)
(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECspeed®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

<table>
<thead>
<tr>
<th>654.roms_s(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)</td>
</tr>
<tr>
<td>Target: x86_64-unknown-linux-gnu</td>
</tr>
<tr>
<td>Thread model: posix</td>
</tr>
<tr>
<td>InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin</td>
</tr>
</tbody>
</table>

Fortran, C benchmarks

<table>
<thead>
<tr>
<th>621.wrf_s(base, peak) 627.cam4_s(base, peak) 628.pop2_s(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)</td>
</tr>
<tr>
<td>Target: x86_64-unknown-linux-gnu</td>
</tr>
<tr>
<td>Thread model: posix</td>
</tr>
<tr>
<td>InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin</td>
</tr>
</tbody>
</table>

Base Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Base Portability Flags

<table>
<thead>
<tr>
<th>603.bwaves_s: -DSPEC_LP64</th>
</tr>
</thead>
<tbody>
<tr>
<td>607.cactuBSSN_s: -DSPEC_LP64</td>
</tr>
</tbody>
</table>

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECspeed®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Base Portability Flags (Continued)

619.lbm_s: -DSPEC_LP64
621.wrf_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
627.cam4_s: -DSPEC_CASE_FLAG -DSPEC_LP64
628.pop2_s: -DSPEC_CASE_FLAG -Mbyteswapio -DSPEC_LP64
638.imagick_s: -DSPEC_LP64
644.nab_s: -DSPEC_LP64
649.fotonik3d_s: -DSPEC_LP64
654.roms_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -mno-adx -mno-sse4a -Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mlllvm -unroll-threshold=50 -mlllvm -inline-threshold=1000
-fremap-arrays -mlllvm -function-specialize -flv-function-specialization
-mlllvm -enable-gvn-hoist -mlllvm -global-vectorize-slp=true
-mlllvm -enable-licm-vrp -mlllvm -reduce-array-computations=3 -z muldefs
-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc
-lflang -lflangrti

Fortran benchmarks:
-m64 -mno-adx -mno-sse4a -Wl,-mlllvm -Wl,-enable-X86-prefetching
-Wl,-mlllvm -Wl,-enable-licm-vrp -Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -Hz,1,0x1 -O3
-march=znver3 -fveclib=AMDLIBM -ffast-math -Mrecursive
-mlllvm -fuse-tile-inner-loop -funroll-loops
-mlllvm -extra-vectorizer-passes -mlllvm -lsr-in-nested-loop
-mlllvm -enable-licm-vrp -mlllvm -reduce-array-computations=3
-mlllvm -global-vectorize-slp=true -z muldefs -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang -lflangrti

Benchmarks using both Fortran and C:
-m64 -mno-adx -mno-sse4a -Wl,-mlllvm -Wl,-enable-X86-prefetching
-Wl,-mlllvm -Wl,-enable-licm-vrp -Wl,-mlllvm -Wl,-region-vectorize
-Wl,-mlllvm -Wl,-function-specialize
-Wl,-mlllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mlllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

| SPECspeed®2017_fp_base = 143 |
| SPECspeed®2017_fp_peak = 146 |

Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Base Optimization Flags (Continued)

Benchmarks using both Fortran and C (continued):
- `-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000`
- `-fremap-arrays -mllvm -function-specialize -flv-function-specialization`
- `-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true`
- `-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -Hz,1,0x1`
- `-Mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops`
- `-mllvm -extra-vectorizer-passes -mllvm -lsr-in-nested-loop -z muldefs`
- `-DSPEC_OPENMP -fopenmp -fopenmp=libomp -lomp -lamdlibm -ljemalloc`
- `-lflang -lflangrti`

Benchmarks using Fortran, C, and C++:
- `-m64 -mno-adx -mno-sse4a -std=c++98`
- `-Wl,-mllvm -Wl,-x86-use-vzeroupper=false`
- `-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-function-specialize`
- `-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6`
- `-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -march=znver3`
- `-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5`
- `-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000`
- `-fremap-arrays -mllvm -function-specialize -flv-function-specialization`
- `-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true`
- `-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3`
- `-mllvm -enable-partial-unswitch -mllvm -unroll-threshold=100`
- `-mllvm -finline-aggressive -mllvm -loop-unswitch-threshold=200000`
- `-mllvm -zeroll-loops -mllvm -aggressive-loop-unswitch`
- `-mllvm -extra-vectorizer-passes -mllvm -convert-pow-exp-to-int=false`
- `-Hz,1,0x1 -Mrecursive -mllvm -fuse-tile-inner-loop -funroll-loops`
- `-mllvm -lsr-in-nested-loop -z muldefs -DSPEC_OPENMP -fopenmp`

Base Other Flags

C benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Fortran benchmarks:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using both Fortran and C:
- `-Wno-unused-command-line-argument -Wno-return-type`

Benchmarks using Fortran, C, and C++:
- `-Wno-unused-command-line-argument -Wno-return-type`
Hewlett Packard Enterprise
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECSPEED®2017_fp_peak = 146
SPECSPEED®2017_fp_base = 143

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Apr-2021
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Peak Compiler Invocation

C benchmarks:
clang

Fortran benchmarks:
flang

Benchmarks using both Fortran and C:
flang clang

Benchmarks using Fortran, C, and C++:
clang++ clang flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

619.lbm_s: basepeak = yes
638.imagick_s: basepeak = yes
644.nab_s: -m64 -mno-adx -mno-sse4a -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize -Ofast -march=znver3
-fveclib=AMDLIBM -ffast-math -flto -fstruct-layout=5
-mllvm -unroll-threshold=50 -fremap-arrays
-fly-function-specialization -mllvm -inline-threshold=1000
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licom-vrp
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -fopenmp
-fopenmp=libomp -lomp -lamdlibm -ljemalloc -lflang

Fortran benchmarks:

603.bwaves_s: -m64 -mno-adx -mno-sse4a
-Wl,-mllvm -Wl,-enable-X86-prefetching
-Wl,-mllvm -Wl,-enable-licom-vrp
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast

(Continued on next page)
Peak Optimization Flags (Continued)

603.bwaves_s (continued):
-`march=znver3` -fveclib=AMDLIBM -ffast-math -Mrecursive
-`-mlvm -reduce-array-computations=3`
-`-mllvm -global-vectorize-slp=true` `-mllvm -enable-licm-vrp`
-`-DSPEC_OPENMP` `-fopenmp` `-fopenmp=libomp` `-lomp` `-lamdlibm`
-`-ljemalloc` `-lflang`

649.fotonik3d_s: `basepeak = yes`

654.roms_s: Same as 603.bwaves_s

Benchmarks using both Fortran and C:

621.wrf_s: `-m64` `-mno-adx` `-mno-sse4a`
-`-W1` `-mllvm -W1` `-enable-X86-prefetching`
-`-W1` `-mllvm -W1` `-enable-licm-vrp`
-`-W1` `-mllvm -W1` `-function-specialize`
-`-W1` `-mllvm -W1` `-align-all-nofallthru-blocks=6`
-`-W1` `-mllvm -W1` `-reduce-array-computations=3` `-Ofast`
-`-march=znver3` `-fveclib=AMDLIBM` `-ffast-math` `-flto`
-`-fstruct-layout=5` `-mllvm -unroll-threshold=50`
-`-fremap-arrays` `-flv-function-specialization`
-`-mllvm -inline-threshold=1000` `-mllvm -enable-gvn-hoist`
-`-mllvm -global-vectorize-slp=true`
-`-mllvm -function-specialize -mllvm -enable-licm-vrp`
-`-mllvm -reduce-array-computations=3` `-Hz,1,0x1` `-O3`
-`-Mrecursive` `-mllvm -fuse-tile-inner-loop` `-funroll-loops`
-`-mllvm -extra-vectorizer-passes` `-mllvm -lsr-in-nested-loop`
-`-DSPEC_OPENMP` `-fopenmp` `-fopenmp=libomp` `-lomp` `-lamdlibm`
-`-ljemalloc` `-lflang`

627.cam4_s: `basepeak = yes`

628.pop2_s: `basepeak = yes`

Benchmarks using Fortran, C, and C++:

607.cactuBSSN_s: `basepeak = yes`

Peak Other Flags

C benchmarks:
-`-Wno-unused-command-line-argument` `-Wno-return-type`

(Continued on next page)
SPEC CPU®2017 Floating Point Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL345 Gen10 Plus
(2.60 GHz, AMD EPYC 7513)

SPECspeed®2017_fp_base = 143
SPECspeed®2017_fp_peak = 146

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Apr-2021
Tested by: HPE
Hardware Availability: Jun-2021
Software Availability: Mar-2021

Peak Other Flags (Continued)

Fortran benchmarks:
-Wno-unused-command-line-argument -Wno-return-type

Benchmarks using both Fortran and C:
-Wno-unused-command-line-argument -Wno-return-type

Benchmarks using Fortran, C, and C++:
-Wno-unused-command-line-argument -Wno-return-type

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.5 on 2020-04-02 01:44:30-0400.
Originally published on 2021-06-08.