Hardware

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>32</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>32</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td></td>
<td>242</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU Name: Intel Xeon Gold 6244
Max MHz: 4400
Nominal: 3600
Enabled: 16 cores, 2 chips, 2 threads/core
Orderable: 1,2 chips
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 24.75 MB I+D on chip per chip
Other: None
Memory: 384 GB (12 x 32 GB 2Rx4 PC4-2933Y-R)
Storage: 1 x 1 TB SATA SSD
Other: None

Software

OS: Red Hat Enterprise Linux release 8.2 (Ootpa)
Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++ Compiler Build 20201113 for Linux; Fortran: Version 2021.1 of Intel Fortran Compiler Classic Build 20201112 for Linux;
Firmware: Version 4.1.14 released Dec-2020
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc memory allocator V5.0.1
Power Management: BIOS and OS set to prefer performance at the cost of additional power usage.
Insur Corporation

Insur NF5180M5 (Intel Xeon Gold 6244)

SPECrate®2017_fp_base = 159

SPECrate®2017_fp_peak = 160

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>747</td>
<td>429</td>
<td>746</td>
<td>430</td>
<td>746</td>
<td>430</td>
<td>16</td>
<td>375</td>
<td>428</td>
<td>375</td>
<td>428</td>
<td>375</td>
<td>428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td>223</td>
<td>182</td>
<td>221</td>
<td>183</td>
<td>223</td>
<td>181</td>
<td>32</td>
<td>223</td>
<td>182</td>
<td>221</td>
<td>183</td>
<td>223</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>296</td>
<td>103</td>
<td>295</td>
<td>103</td>
<td>295</td>
<td>103</td>
<td>32</td>
<td>296</td>
<td>103</td>
<td>295</td>
<td>103</td>
<td>295</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>32</td>
<td>803</td>
<td>104</td>
<td>801</td>
<td>105</td>
<td>802</td>
<td>104</td>
<td>16</td>
<td>365</td>
<td>115</td>
<td>365</td>
<td>115</td>
<td>365</td>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td>498</td>
<td>150</td>
<td>499</td>
<td>150</td>
<td>498</td>
<td>150</td>
<td>32</td>
<td>438</td>
<td>171</td>
<td>437</td>
<td>171</td>
<td>439</td>
<td>170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>519.lbn_r</td>
<td>32</td>
<td>326</td>
<td>103</td>
<td>337</td>
<td>100</td>
<td>327</td>
<td>103</td>
<td>32</td>
<td>326</td>
<td>103</td>
<td>337</td>
<td>100</td>
<td>327</td>
<td>103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td>442</td>
<td>162</td>
<td>441</td>
<td>162</td>
<td>440</td>
<td>163</td>
<td>16</td>
<td>269</td>
<td>133</td>
<td>268</td>
<td>134</td>
<td>268</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td>360</td>
<td>135</td>
<td>361</td>
<td>135</td>
<td>361</td>
<td>135</td>
<td>32</td>
<td>360</td>
<td>135</td>
<td>361</td>
<td>135</td>
<td>361</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td>390</td>
<td>144</td>
<td>386</td>
<td>145</td>
<td>383</td>
<td>146</td>
<td>32</td>
<td>390</td>
<td>144</td>
<td>386</td>
<td>145</td>
<td>383</td>
<td>146</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td>200</td>
<td>398</td>
<td>199</td>
<td>401</td>
<td>199</td>
<td>401</td>
<td>32</td>
<td>200</td>
<td>398</td>
<td>199</td>
<td>401</td>
<td>199</td>
<td>401</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td>223</td>
<td>242</td>
<td>223</td>
<td>242</td>
<td>223</td>
<td>241</td>
<td>32</td>
<td>219</td>
<td>245</td>
<td>222</td>
<td>243</td>
<td>221</td>
<td>244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td>1102</td>
<td>113</td>
<td>1089</td>
<td>115</td>
<td>1100</td>
<td>113</td>
<td>32</td>
<td>1102</td>
<td>113</td>
<td>1089</td>
<td>115</td>
<td>1100</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td>557</td>
<td>91.3</td>
<td>559</td>
<td>91.0</td>
<td>560</td>
<td>90.9</td>
<td>16</td>
<td>263</td>
<td>96.8</td>
<td>263</td>
<td>96.8</td>
<td>262</td>
<td>97.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECrate®2017_fp_base = 159

SPECrate®2017_fp_peak = 160

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
SCALING_GOVERNOR set to Performance

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/home/CPU2017/lib/intel64:/home/CPU2017/je5.0.1-64"
MALLOC_CONF = "retain:true"

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:

(Continued on next page)
Inspur Corporation

Inspur NF5180M5 (Intel Xeon Gold 6244)

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

SPECrate®2017_fp_base = 159
SPECrate®2017_fp_peak = 160

General Notes (Continued)

sync; echo 3> /proc/sys/vm/drop_caches
runcpu command invoked through numacll i.e.:
umacll --interleave=all runcpu <etc>

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5,
and the system compiler gcc 4.8.5;
sources available from jemalloc.net or

Platform Notes

BIOS configuration:
ENERGY_PERF_BIAS_CFG mode set to Performance
Hardware Prefetch set to Disable
VT Support set to Disable
C1E Support set to Disable
Sub NUMA Cluster (SNC) set to Enable
Intel Hyper Threading Technology set to Enable

Sysinfo program /home/CPU2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acfc64d
running on localhost.localdomain Wed May 26 10:24:06 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz
 2 "physical id"s (chips)
 32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 8
siblings : 16
 physical 0: cores 2 4 8 9 11 17 20 26
 physical 1: cores 2 3 4 9 20 24 25 27

(Continued on next page)
Platform Notes (Continued)

From `lscpu` from util-linux 2.32.1:
- **Architecture:** x86_64
- **CPU op-mode(s):** 32-bit, 64-bit
- **Byte Order:** Little Endian
- **CPU(s):** 32
- **On-line CPU(s) list:** 0-31
- **Thread(s) per core:** 2
- **Core(s) per socket:** 8
- **Socket(s):** 2
- **NUMA node(s):** 4
- **Vendor ID:** GenuineIntel
- **CPU family:** 6
- **Model:** 85
- **Model name:** Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz
- **Stepping:** 7
- **CPU MHz:** 4291.436
- **BogoMIPS:** 7200.00
- **Virtualization:** VT-x
- **L1d cache:** 32K
- **L1i cache:** 32K
- **L2 cache:** 1024K
- **L3 cache:** 25344K
- **NUMA node0 CPU(s):** 0,2,3,5,16,18,19,21
- **NUMA node1 CPU(s):** 1,4,6,7,17,20,22,23
- **NUMA node2 CPU(s):** 8,11,13,14,24,27,29,30
- **NUMA node3 CPU(s):** 9,10,12,15,25,26,28,31
- **Flags:** fpu vme de pse tsc msr pae mce cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bps rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 stpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_c3 invpcid_single intel_pstate mba ibrs ibrd ibrs_note enhanced_tpr_shadow vmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xsaveopt xsaveopt xsaveopt xsaves xsaveopt xsaveopt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pfn pts hwp_epp pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

```
From `numactl --hardware`

WARNING: a numactl 'node' might or might not correspond to a physical chip.

available: 4 nodes (0-3)
node 0 cpus: 0 2 3 5 16 18 19 21
node 0 size: 95339 MB
```
Inspur Corporation
Inspur NF5180M5 (Intel Xeon Gold 6244)

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

SPECrate®2017_fp_base = 159
SPECrate®2017_fp_peak = 160

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

Platform Notes (Continued)

node 0 free: 88459 MB
node 1 cpus: 1 4 6 7 17 20 22 23
node 1 size: 96765 MB
node 1 free: 92304 MB
node 2 cpus: 8 11 13 14 24 27 29 30
node 2 size: 96738 MB
node 2 free: 92294 MB
node 3 cpus: 9 10 12 15 25 26 28 31
node 3 size: 96765 MB
node 3 free: 92083 MB
node distances:
node 0 1 2 3
0: 10 11 21 21
1: 11 10 21 21
2: 21 21 10 11
3: 21 21 11 10

From /proc/meminfo
MemTotal: 394863536 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sbin/tuned-adm active
 Current active profile: throughput-performance

From /etc/*release* /etc/*version*
os-release:
 NAME="Red Hat Enterprise Linux"
 VERSION="8.2 (Ootpa)"
 ID="rhel"
 ID_LIKE="fedora"
 VERSION_ID="8.2"
 PLATFORM_ID="platform:el8"
 PRETTY_NAME="Red Hat Enterprise Linux 8.2 (Ootpa)"
 ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.2 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.2 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.2:ga

uname -a:
 Linux localhost.localdomain 4.18.0-193.el8.x86_64 #1 SMP Fri Mar 27 14:35:58 UTC 2020
 x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2018-12207 (iTLB Multihit): KVM: Vulnerable
CVE-2018-3620 (L1 Terminal Fault): Not affected

(Continued on next page)
Inspur Corporation
Inspur NF5180M5 (Intel Xeon Gold 6244)

SPECrade®2017_fp_base = 159
SPECrade®2017_fp_peak = 160

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

Platform Notes (Continued)

Microarchitectural Data Sampling:
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass):
 Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1):
 Mitigation: usercopy/swaps barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2):
 Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): No status reported
CVE-2019-11135 (TSX Asynchronous Abort):
 Mitigation: Clear CPU buffers; SMT vulnerable

run-level 3 May 26 04:05

SPEC is set to: /home/CPU2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/mapper/rhel-home xfs 838G 75G 764G 9% /home

From /sys/devices/virtual/dmi/id
 Vendor: Inspur
 Product: NF5180M5
 Serial: 219243921

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
 12x NO DIMM NO DIMM
 12x Samsung M393A4K40CB2-CVF 32 GB 2 rank 2933

BIOS:
 BIOS Vendor: American Megatrends Inc.
 BIOS Version: 4.1.14
 BIOS Date: 12/10/2020
 BIOS Revision: 5.14

(End of data from sysinfo program)

Compiler Version Notes

==
C | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
 | 544.nab_r(base, peak)
==

(Continued on next page)
Inspur Corporation

Inspur NF5180M5 (Intel Xeon Gold 6244)

SPEC CPU®2017 Floating Point Rate Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

SPECrate®2017_fp_base = 159

SPECrate®2017_fp_peak = 160

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

Compiler Version Notes (Continued)

--
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

==
C++ | 508.namd_r(base, peak) 510.parest_r(base, peak)
--
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

C++, C | 511.povray_r(peak)
--
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

C++, C | 511.povray_r(base) 526.blender_r(base, peak)
--
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

C++, C | 511.povray_r(peak)
--
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
--

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Inspur Corporation

Inspur NF5180M5 (Intel Xeon Gold 6244)

SPECrater®2017_fp_base = 159
SPECrater®2017_fp_peak = 160

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

Compiler Version Notes (Continued)

==
C++, C | 511.povray_r(base) 526.blender_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
==

C++, C, Fortran | 507.cactuBSSN_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
==

Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak)
| 554.roms_r(base, peak)
==
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
==

Fortran, C | 521.wrf_r(peak)
==
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
==

Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
(Continued on next page)
Inspur Corporation

Inspur NF5180M5 (Intel Xeon Gold 6244)

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: May-2021
Hardware Availability: Apr-2019
Software Availability: Apr-2021

Compiler Version Notes (Continued)

Intel (R) Fortran Intel (R) 64 Compiler Classic for applications running on
Intel (R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel (R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran, C | 521.wrf_r(peak)

Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

(Continued on next page)
Base Compiler Invocation (Continued)

Benchmarks using both C and C++:
```
icpx icx
```

Benchmarks using Fortran, C, and C++:
```
icpx icx ifort
```

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
```
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

C++ benchmarks:
```
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib
```

Fortran benchmarks:
```
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div
-qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto
-mbranches-within-32B-boundaries -ljemalloc
```

(Continued on next page)
Base Optimization Flags (Continued)

Fortran benchmarks (continued):

-L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both Fortran and C:

-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-mbranches-within-32B-boundaries -nostandard-realloc-lhs
-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both C and C++:

-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using Fortran, C, and C++:

-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-mbranches-within-32B-boundaries -nostandard-realloc-lhs
-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Peak Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
521.wrf_r: ifort icc
527.cam4_r: ifort icx

Benchmarks using both C and C++:

(Continued on next page)
Peak Compiler Invocation (Continued)

511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
 icpx icx ifort

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes

544.nab_r: -w -std=c11 -m64 -W1,-z,muldefs -xCORE-AVX512 -flto
 -Ofast -qopt-mem-layout-trans=4
 -fimf-accuracy-bits=14:sqrt
 -mbranches-within-32B-boundaries -ljemalloc
 -L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:

508.namd_r: basepeak = yes

510.parest_r: -w -m64 -W1,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
 -flto -mfpmath=sse -funroll-loops
 -qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
 -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:

503.bwaves_r: -w -m64 -W1,-z,muldefs -xCORE-AVX512 -O3 -ipo
 -no-prec-div -qopt-prefetch -ffinite-math-only
 -qopt-multiple-gather-scatter-by-shuffles
 -qopt-mem-layout-trans=4 -nostandard-realloc-lhs
 -align array32byte -auto -mbranches-within-32B-boundaries
 -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
Peak Optimization Flags (Continued)

549.fotonik3d_r: basepeak = yes

554.roms_r: Same as 503.bwaves_r

Benchmarks using both Fortran and C:

```
521.wrf_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-nostandard-realloc-lhs -align array32byte -auto
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc
```

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

```
511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc
```

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

```
507.cactuBSSN_r: basepeak = yes
```

The flags files that were used to format this result can be browsed at

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml
http://www.spec.org/cpu2017/flags/Inspur-Platform-Settings-V1.9.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-05-26 10:24:06-0400.
Report generated on 2021-06-22 17:02:46 by CPU2017 PDF formatter v6442.
Originally published on 2021-06-22.