SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

<table>
<thead>
<tr>
<th>Software</th>
<th>Hardware</th>
</tr>
</thead>
</table>
| OS: Red Hat Enterprise Linux 8.3 (Ootpa)
Kernel 4.18.0-240.el8.x86_64
Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
Compiler Build 20201113 for Linux;
Fortran: Version 2021.1 of Intel Fortran Compiler
Classic Build 20201112 for Linux;
C/C++: Version 2021.1 of Intel C/C++ Compiler
Classic Build 20201112 for Linux
Parallel: No
Firmware: HPE BIOS Version U46 v1.42 05/16/2021 released May-2021
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc memory allocator V5.0.1
(Continued on next page) | CPU Name: Intel Xeon Platinum 8360Y
Max MHz: 3500
Nominal: 2400
Enabled: 72 cores, 2 chips, 2 threads/core
Orderable: 1, 2 chip(s)
Cache L1: 32 KB I + 48 KB D on chip per core
L2: 1.25 MB I+D on chip per core
L3: 54 MB I+D on chip per chip
Other: None
Memory: 2 TB (32 x 64 GB 2Rx4 PC4-3200AA-R)
Storage: 1 x 400 GB SAS SSD, RAID 0
Other: None |

SPECrater®2017_fp_base = 447
SPECrater®2017_fp_peak = 474

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>144</td>
<td>72</td>
<td>740</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>144</td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>144</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>144</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>144</td>
<td>593</td>
<td></td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>144</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>144</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>144</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>144</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>144</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>144</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>144</td>
<td>1977</td>
<td>730</td>
<td>1978</td>
<td>730</td>
<td>1977</td>
<td>730</td>
<td>72</td>
<td>976</td>
<td>740</td>
<td>976</td>
<td>740</td>
<td>976</td>
<td>740</td>
<td>975</td>
<td>741</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>144</td>
<td>286</td>
<td>637</td>
<td>286</td>
<td>637</td>
<td>286</td>
<td>636</td>
<td>144</td>
<td>286</td>
<td>637</td>
<td>286</td>
<td>637</td>
<td>286</td>
<td>636</td>
<td>286</td>
<td>636</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>144</td>
<td>338</td>
<td>405</td>
<td>338</td>
<td>404</td>
<td>339</td>
<td>404</td>
<td>144</td>
<td>338</td>
<td>405</td>
<td>338</td>
<td>404</td>
<td>339</td>
<td>404</td>
<td>339</td>
<td>404</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>144</td>
<td>1772</td>
<td>213</td>
<td>1771</td>
<td>213</td>
<td>1780</td>
<td>212</td>
<td>72</td>
<td>660</td>
<td>285</td>
<td>658</td>
<td>286</td>
<td>662</td>
<td>284</td>
<td>662</td>
<td>284</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>144</td>
<td>567</td>
<td>593</td>
<td>568</td>
<td>592</td>
<td>567</td>
<td>593</td>
<td>144</td>
<td>501</td>
<td>671</td>
<td>495</td>
<td>680</td>
<td>494</td>
<td>681</td>
<td>495</td>
<td>680</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>144</td>
<td>559</td>
<td>271</td>
<td>559</td>
<td>271</td>
<td>560</td>
<td>271</td>
<td>144</td>
<td>559</td>
<td>271</td>
<td>559</td>
<td>271</td>
<td>560</td>
<td>271</td>
<td>560</td>
<td>271</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>144</td>
<td>931</td>
<td>347</td>
<td>927</td>
<td>348</td>
<td>927</td>
<td>348</td>
<td>72</td>
<td>441</td>
<td>366</td>
<td>432</td>
<td>374</td>
<td>431</td>
<td>374</td>
<td>432</td>
<td>374</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>144</td>
<td>410</td>
<td>535</td>
<td>410</td>
<td>535</td>
<td>408</td>
<td>538</td>
<td>144</td>
<td>410</td>
<td>535</td>
<td>410</td>
<td>535</td>
<td>408</td>
<td>538</td>
<td>408</td>
<td>538</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>144</td>
<td>479</td>
<td>525</td>
<td>482</td>
<td>523</td>
<td>478</td>
<td>526</td>
<td>144</td>
<td>479</td>
<td>525</td>
<td>482</td>
<td>523</td>
<td>478</td>
<td>526</td>
<td>482</td>
<td>526</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>144</td>
<td>261</td>
<td>1370</td>
<td>262</td>
<td>1370</td>
<td>275</td>
<td>1300</td>
<td>144</td>
<td>261</td>
<td>1370</td>
<td>262</td>
<td>1370</td>
<td>275</td>
<td>1300</td>
<td>275</td>
<td>1300</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>144</td>
<td>269</td>
<td>900</td>
<td>268</td>
<td>905</td>
<td>267</td>
<td>906</td>
<td>144</td>
<td>263</td>
<td>923</td>
<td>261</td>
<td>928</td>
<td>262</td>
<td>926</td>
<td>262</td>
<td>926</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>144</td>
<td>2424</td>
<td>231</td>
<td>2424</td>
<td>232</td>
<td>2423</td>
<td>232</td>
<td>144</td>
<td>2424</td>
<td>231</td>
<td>2424</td>
<td>232</td>
<td>2423</td>
<td>232</td>
<td>2423</td>
<td>232</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>144</td>
<td>1429</td>
<td>160</td>
<td>1429</td>
<td>160</td>
<td>1432</td>
<td>160</td>
<td>72</td>
<td>582</td>
<td>197</td>
<td>582</td>
<td>197</td>
<td>582</td>
<td>197</td>
<td>582</td>
<td>196</td>
</tr>
</tbody>
</table>

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
"/home/cpu2017_1.1.8/lib/intel64:/home/cpu2017_1.1.8/jc5.0.1-64"
MALLOCONF = "retain:true"
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

SPEC CPU®2017 Floating Point Rate Result

SPECrate®2017_fp_base = 447
SPECrate®2017_fp_peak = 474

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Jul 5 08:08:56 EDT 2021
Submission: cpu2017-20210705-27775.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for
the Intel Xeon Platinum 8360Y processor.

BIOS Configuration:
Workload Profile set to General Throughput Compute
Memory Patrol Scrubbing set to Disabled
Advanced Memory Protection set to Advanced ECC
Last Level Cache (LLC) Prefetch set to Enabled
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Enhanced Processor Performance Profile set to Aggressive
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
DCU Stream Prefetcher set to Disabled
XPT Remote Prefetcher set to Enabled
Energy/Performance Bias set to Balanced Performance

Sysinfo program /home/cpu2017_1.1.8/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16acafc64d
running on localhost.localdomain Fri Jun 25 00:31:48 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz

(Continued on next page)
Platform Notes (Continued)

2 "physical id"s (chips)
144 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 36
siblings : 72
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

From lscpu from util-linux 2.32.1:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 144
On-line CPU(s) list: 0-143
Thread(s) per core: 2
Core(s) per socket: 36
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Platinum 8360Y CPU @ 2.40GHz
Stepping: 6
CPU MHz: 1581.371
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 55296K
NUMA node0 CPU(s): 0-17,72-89
NUMA node1 CPU(s): 18-35,90-107
NUMA node2 CPU(s): 36-53,108-125
NUMA node3 CPU(s): 54-71,126-143
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtrunc lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault ebpx cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnumi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cmq rdt_a avx512f avx512dq rdseed adx smap avx512sfma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xsaveopt xsaves cmq_llc cmq_cmov cmqexampleInputEmail1(0, 15); cmq_mbm_total

(Continued on next page)
Platform Notes (Continued)

cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku
ospke avx512_vbmi2 gfni vaes vpcmullqdq avx512_vnni avx512_bitalg tme
avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities

/proc/cpuinfo cache data
 cache size : 55296 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
 available: 4 nodes (0-3)
 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 72 73 74 75 76 77 78 79 80 81
 82 83 84 85 86 87 88 89
 node 0 size: 502420 MB
 node 0 free: 515270 MB
 node 1 cpus: 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 90 91 92 93 94 95 96
 97 98 99 100 101 102 103 104 105 106 107
 node 1 size: 500681 MB
 node 1 free: 515710 MB
 node 2 cpus: 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 108 109 110 111 112
 113 114 115 116 117 118 119 120 121 122 123 124 125
 node 2 size: 502071 MB
 node 2 free: 515728 MB
 node 3 cpus: 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 126 127 128 129 130
 131 132 133 134 135 136 137 138 139 140 141 142 143
 node 3 size: 499864 MB
 node 3 free: 515630 MB
 node distances:
 node 0 1 2 3
 0: 10 20 30 30
 1: 20 10 30 30
 2: 30 30 10 20
 3: 30 30 20 10

From /proc/meminfo
 MemTotal: 2113468776 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

/sbin/tuned-adm active
Current active profile: throughput-performance

From /etc/*release*/etc/*version*
os-release:
 NAME="Red Hat Enterprise Linux"
 VERSION="8.3 (Ootpa)"
 ID="rhel"
 ID_LIKE="fedora"

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

SPECrates

<table>
<thead>
<tr>
<th>SPECrates</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrates®2017_fp_base</td>
<td>447</td>
</tr>
<tr>
<td>SPECrates®2017_fp_peak</td>
<td>474</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

```
VERSION_ID="8.3"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga

uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2018-3639 (Speculative Store Bypass): Mitigation: usercopy/swapgs barriers and __user pointer sanitization
CVE-2017-5753 (Spectre variant 1): Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2017-5715 (Spectre variant 2): Not affected
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Jun 25 00:30

SPEC is set to: /home/cpu2017_1.1.8

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>Type</th>
<th>Size</th>
<th>Used</th>
<th>Avail</th>
<th>Use%</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/mapper/rhel00-home</td>
<td>xfs</td>
<td>372G</td>
<td>229G</td>
<td>143G</td>
<td>62%</td>
<td>/home</td>
</tr>
</tbody>
</table>

From /sys/devices/virtual/dmi/id

Vendor: HPE  
Product: ProLiant DL360 Gen10 Plus  
Product Family: ProLiant  
Serial: CN701108CQ

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
32x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200

(Continued on next page)
Hewlett Packard Enterprise  
(Test Sponsor: HPE)  
ProLiant DL360 Gen10 Plus  
(2.40 GHz, Intel Xeon Platinum 8360Y)  

SPEC CPU®2017 Floating Point Rate Result  
Copyright 2017-2021 Standard Performance Evaluation Corporation  

SPECrate®2017_fp_base = 447  
SPECrate®2017_fp_peak = 474  

CPU2017 License: 3  
Test Sponsor: HPE  
Tested by: HPE  

Platform Notes (Continued)

BIOS:
  BIOS Vendor: HPE  
  BIOS Version: U46  
  BIOS Date: 05/16/2021  
  BIOS Revision: 1.42  
  Firmware Revision: 2.42  

(End of data from sysinfo program)

Compiler Version Notes

==============================================================================  
| C               | 519.lbm_r(base, peak) 538.imagick_r(base, peak) 544.nab_r(base, peak) |
| Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, |
| Version 2021.1 Build 20201113  |
| Copyright (C) 1985-2020 Intel Corporation. All rights reserved. |
|==============================================================================|

==============================================================================  
| C++             | 508.namd_r(base, peak) 510.parest_r(base, peak) |
| Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, |
| Version 2021.1 Build 20201113  |
| Copyright (C) 1985-2020 Intel Corporation. All rights reserved. |
|==============================================================================|

==============================================================================  
| C++, C          | 511.povray_r(peak) |
| Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on |
| Intel(R) 64, Version 2021.1 Build 20201112_000000  |
| Copyright (C) 1985-2020 Intel Corporation. All rights reserved. |
|==============================================================================|

==============================================================================  
| C++, C          | 511.povray_r(base) 526.blender_r(base, peak) |
| Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, |
| Version 2021.1 Build 20201113  |
| Copyright (C) 1985-2020 Intel Corporation. All rights reserved. |
|==============================================================================|

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

SPECrate®2017_fp_base = 447
SPECrate®2017_fp_peak = 474

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
C++, C          | 511.povray_r(peak)
==============================================================================

Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
C++, C          | 511.povray_r(base) 526.blender_r(base, peak)
==============================================================================

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
C++, C, Fortran | 507.cactuBSSN_r(base, peak)
==============================================================================

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
Fortran         | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak)
==============================================================================

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

SPECrate®2017_fp_base = 447
SPECrate®2017_fp_peak = 474

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
Fortran, C | 521.wrf_r(peak)
==============================================================================
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
==============================================================================
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
Fortran, C | 521.wrf_r(peak)
==============================================================================
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==============================================================================
Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
==============================================================================
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Hewlett Packard Enterprise  
(Test Sponsor: HPE)  
ProLiant DL360 Gen10 Plus  
(2.40 GHz, Intel Xeon Platinum 8360Y)  

| SPECrate®2017_fp_base = 447 | SPECrate®2017_fp_peak = 474 |

CPU2017 License: 3  
Test Sponsor: HPE  
Tested by: HPE  

**Base Compiler Invocation**

C benchmarks:
```
icx```

C++ benchmarks:
```
icpx```

Fortran benchmarks:
```
ifort```

Benchmarks using both Fortran and C:
```
ifort icx```

Benchmarks using both C and C++:
```
icpx icx```

Benchmarks using Fortran, C, and C++:
```
icpx icx ifort```

**Base Portability Flags**

```
503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64```

Base Optimization Flags

```
C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-ffloat-math=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib```

(Continued on next page)
Hewlett Packard Enterprise  
ProLiant DL360 Gen10 Plus  
(2.40 GHz, Intel Xeon Platinum 8360Y)  

SPEC CPU®2017 Floating Point Rate Result  

Copyright 2017-2021 Standard Performance Evaluation Corporation  

Hewlett Packard Enterprise  
ProLiant DL360 Gen10 Plus  
(2.40 GHz, Intel Xeon Platinum 8360Y)  

SPECrate®2017_fp_base = 447  
SPECrate®2017_fp_peak = 474  

Peak Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Base Optimization Flags (Continued)

C++ benchmarks:
- `w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto`
- `mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
- `mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Fortran benchmarks:
- `w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div`
- `qopt-prefetch -ffinite-math-only`
- `qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4`
- `nostandard-realloc-lhs -align array32byte -auto`
- `mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both Fortran and C:
- `w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo`
- `no-prec-div -qopt-prefetch -ffinite-math-only`
- `qopt-multiple-gather-scatter-by-shuffles`
- `mbranches-within-32B-boundaries -nostandard-realloc-lhs`
- `align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both C and C++:
- `w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
- `mbranches-within-32B-boundaries -ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using Fortran, C, and C++:
- `w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
- `flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3`
- `no-prec-div -qopt-prefetch -ffinite-math-only`
- `qopt-multiple-gather-scatter-by-shuffles`
- `mbranches-within-32B-boundaries -nostandard-realloc-lhs`
- `align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

(Caused on next page)
Peak Compiler Invocation (Continued)

Fortran benchmarks:
  ifort

Benchmarks using both Fortran and C:
  521.wrf_r: ifort icc
  527.cam4_r: ifort icx

Benchmarks using both C and C++:
  511.povray_r: icpc icc
  526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
  icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
  519.lbm_r: basepeak = yes
  538.imagick_r: basepeak = yes
  544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
             -Ofast -qopt-mem-layout-trans=4
             -fimf-accuracy-bits=14:sqrt
             -mbranches-within-32B-boundaries -ljemalloc
             -L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
  508.namd_r: basepeak = yes
  510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
               -flto -mfpmath=sse -funroll-loops

(Continued on next page)
Spec CPU®2017 Floating Point Rate Result  

Hewlett Packard Enterprise  
ProLiant DL360 Gen10 Plus  
(2.40 GHz, Intel Xeon Platinum 8360Y)

**SPECrate®2017_fp_base = 447**  
**SPECrate®2017_fp_peak = 474**

---

**Peak Optimization Flags (Continued)**

510.parest_r (continued):
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries  
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:

503.bwaves_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo  
-no-prec-div -qopt-prefetch -ffinite-math-only  
-qopt-multiple-gather-scatter-by-shuffles  
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs  
-align array32byte -auto -mbranches-within-32B-boundaries  
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

549.fotonik3d_r: basepeak = yes

554.roms_r: Same as 503.bwaves_r

**Benchmarks using both Fortran and C:**

521.wrf_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3  
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only  
-qopt-multiple-gather-scatter-by-shuffles  
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries  
-nostandard-realloc-lhs -align array32byte -auto  
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

527.cam4_r: basepeak = yes

**Benchmarks using both C and C++:**

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3  
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only  
-qopt-multiple-gather-scatter-by-shuffles  
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries  
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

**Benchmarks using Fortran, C, and C++:**

507.cactuBSSN_r: basepeak = yes

---

The flags files that were used to format this result can be browsed at

[http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html](http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html)  
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.40 GHz, Intel Xeon Platinum 8360Y)

SPECrate®2017_fp_base = 447
SPECrate®2017_fp_peak = 474

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-1CX-revE.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-06-24 15:01:47-0400.
Originally published on 2021-07-20.