SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise

(Test Sponsor: HPE)

ProLiant DL360 Gen10 Plus

(2.30 GHz, Intel Xeon Gold 6314U)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

<table>
<thead>
<tr>
<th>Test</th>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>64</td>
<td>3</td>
<td>302</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>64</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>64</td>
<td>172</td>
<td>257</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>64</td>
<td>105</td>
<td>295</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>64</td>
<td>137</td>
<td>182</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>64</td>
<td>139</td>
<td>234</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>64</td>
<td>172</td>
<td>231</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>64</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>64</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>64</td>
<td>603</td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>64</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>64</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>64</td>
<td>75.5</td>
<td>97.5</td>
</tr>
</tbody>
</table>

Hardware

CPU Name: Intel Xeon Gold 6314U
Max MHz: 3400
Nominal: 2300
Enabled: 32 cores, 1 chip, 2 threads/core
Orderable: 1, 2 chip(s)
Cache L1: 32 KB I + 48 KB D on chip per core
L2: 1.25 MB I+D on chip per core
L3: 48 MB I+D on chip per chip
Memory: 1 TB (16 x 64 GB 2Rx4 PC4-3200AA-R)
Storage: 1 x 800 GB SAS SSD, RAID 0
Other: None

Software

OS: Red Hat Enterprise Linux 8.3 (Ootpa)
Kernel: 4.18.0-240.el8.x86_64
Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
C++: Compiler Build 20201113 for Linux; Fortran: Version 2021.1 of Intel Fortran Compiler
Classic Build 20201112 for Linux;
Parallel: No
Firmware: HPE BIOS Version U46 v1.42 05/26/2021 released May-2021
File System: xfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 64-bit
Other: jemalloc memory allocator V5.0.1

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPECrate®2017_fp_base = 208
SPECrate®2017_fp_peak = 220

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>64</td>
<td>1758</td>
<td>365</td>
<td>1756</td>
<td>365</td>
<td>1756</td>
<td>365</td>
<td>32</td>
<td>872</td>
<td>368</td>
<td>871</td>
<td>369</td>
<td>872</td>
<td>368</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>64</td>
<td>268</td>
<td>302</td>
<td>269</td>
<td>302</td>
<td>268</td>
<td>303</td>
<td>64</td>
<td>268</td>
<td>302</td>
<td>269</td>
<td>302</td>
<td>268</td>
<td>303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>64</td>
<td>354</td>
<td>172</td>
<td>354</td>
<td>172</td>
<td>354</td>
<td>172</td>
<td>64</td>
<td>353</td>
<td>172</td>
<td>354</td>
<td>172</td>
<td>354</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510.parest_r</td>
<td>64</td>
<td>1587</td>
<td>105</td>
<td>1589</td>
<td>105</td>
<td>1589</td>
<td>105</td>
<td>32</td>
<td>611</td>
<td>137</td>
<td>615</td>
<td>136</td>
<td>613</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>511.povray_r</td>
<td>64</td>
<td>582</td>
<td>257</td>
<td>582</td>
<td>257</td>
<td>582</td>
<td>257</td>
<td>64</td>
<td>506</td>
<td>295</td>
<td>507</td>
<td>295</td>
<td>508</td>
<td>294</td>
<td></td>
<td></td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>64</td>
<td>484</td>
<td>139</td>
<td>484</td>
<td>139</td>
<td>483</td>
<td>139</td>
<td>64</td>
<td>484</td>
<td>139</td>
<td>484</td>
<td>139</td>
<td>484</td>
<td>139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>64</td>
<td>831</td>
<td>172</td>
<td>830</td>
<td>173</td>
<td>835</td>
<td>172</td>
<td>32</td>
<td>394</td>
<td>182</td>
<td>395</td>
<td>182</td>
<td>395</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>64</td>
<td>417</td>
<td>234</td>
<td>415</td>
<td>235</td>
<td>417</td>
<td>234</td>
<td>64</td>
<td>417</td>
<td>234</td>
<td>415</td>
<td>235</td>
<td>417</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>64</td>
<td>484</td>
<td>231</td>
<td>484</td>
<td>231</td>
<td>484</td>
<td>231</td>
<td>64</td>
<td>484</td>
<td>231</td>
<td>484</td>
<td>231</td>
<td>484</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>64</td>
<td>264</td>
<td>603</td>
<td>265</td>
<td>600</td>
<td>264</td>
<td>604</td>
<td>64</td>
<td>264</td>
<td>603</td>
<td>265</td>
<td>600</td>
<td>264</td>
<td>604</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>64</td>
<td>274</td>
<td>393</td>
<td>277</td>
<td>389</td>
<td>277</td>
<td>389</td>
<td>64</td>
<td>271</td>
<td>397</td>
<td>270</td>
<td>399</td>
<td>270</td>
<td>399</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>64</td>
<td>2207</td>
<td>113</td>
<td>2202</td>
<td>113</td>
<td>2203</td>
<td>113</td>
<td>64</td>
<td>2207</td>
<td>113</td>
<td>2202</td>
<td>113</td>
<td>2203</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>64</td>
<td>1346</td>
<td>75.5</td>
<td>1355</td>
<td>75.0</td>
<td>1344</td>
<td>75.7</td>
<td>32</td>
<td>523</td>
<td>97.3</td>
<td>521</td>
<td>97.5</td>
<td>520</td>
<td>97.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPECrate®2017_fp_base = 208
SPECrate®2017_fp_peak = 220

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/home/cpu2017/lib/intel64:/home/cpu2017/je5.0.1-64"
MALLOC_CONF = "retain:true"
Hewlett Packard Enterprise

ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPEC CPU®2017 Floating Point Rate Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

SPECrate®2017_fp_base = 208
SPECrate®2017_fp_peak = 220

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
runcpu command invoked through numaclt i.e.:
numactl --interleave=all runcpu <etc>
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Jul 19 06:09:43 EDT 2021
Submission: cpu2017-20210719-28192.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for
the Intel Xeon Gold 6314U processor.

BIOS Configuration:
Workload Profile set to General Throughput Compute
Memory Patrol Scrubbing set to Disabled
Advanced Memory Protection set to Advanced ECC
Last Level Cache (LLC) Prefetch set to Enabled
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Enhanced Processor Performance Profile set to Aggressive
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
DCU Stream Prefetcher set to Disabled
XPT Remote Prefetcher set to Enabled
Energy/Performance Bias set to Balanced Performance

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b555891ef0e16acaf64d
running on localhost.localdomain Tue Jul 13 01:15:55 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6314U CPU @ 2.30GHz

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPECrate®2017_fp_base = 208
SPECrate®2017_fp_peak = 220

Platform Notes (Continued)

1 "physical id"s (chips)
64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 32
siblings : 64
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31

From lscpu from util-linux 2.32.1:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 1
NUMA node(s): 2

Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Gold 6314U CPU @ 2.30GHz
Stepping: 6
CPU MHz: 2246.355
BogoMIPS: 4600.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 49152K
NUMA node0 CPU(s): 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid
aenrmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd
mba ibrs ibpb ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad
fsdbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq
rdseed adx smap avx512ifma cmislmhot clwb intel_pt avx512cd sha_ni avx512bw
avx512vl xsavesopt xsavec xgetbv1 xsaves cqm_llc cqm_occmap_1ll cqm_mbb_total
cqm_mbb_local split_lock_detect wbinvd dtherm idate pni pts avx512vbm1 umpk pku
ospke avx512_vbmi2 gfin va vpcm1ldqd avx512_vnii avx512_bitalg tme
avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities

(Continued on next page)
Platform Notes (Continued)

/proc/cpuinfo cache data
cache size : 49152 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 0 size: 497455 MB
node 0 free: 515165 MB
node 1 cpus: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
node 1 size: 498437 MB
node 1 free: 515234 MB
node distances:
node 0 1
0: 10 20
1: 20 10

From /proc/meminfo
MemTotal: 1056525472 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

/sbin/tuned-adm active
Current active profile: throughput-performance

From /etc/*release* /etc/*version*
os-release:
NAME="Red Hat Enterprise Linux"
VERSION="8.3 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.3"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga

uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
Platform Notes (Continued)

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swapgs barriers and __user pointer sanitation
CVE-2017-5715 (Spectre variant 2): Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Jul 13 01:10

SPEC is set to: /home/cpu2017
 Filesystem Type Size Used Avail Use% Mounted on
 /dev/mapper/rhel-home xfs 670G 109G 561G 17% /home

From /sys/devices/virtual/dmi/id
 Vendor: HPE
 Product: ProLiant DL360 Gen10 Plus
 Product Family: ProLiant
 Serial: CN7013030H

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
 16x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200
 16x UNKNOWN NOT AVAILABLE

BIOS:
 BIOS Vendor: HPE
 BIOS Version: U46
 BIOS Date: 05/26/2021
 BIOS Revision: 1.42
 Firmware Revision: 2.42

(End of data from sysinfo program)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPECrater®2017_fp_base = 208
SPECrater®2017_fp_peak = 220

CPU2017 License: 3
Test Date: Jul-2021
Test Sponsor: HPE
Hardware Availability: Jun-2021
Tested by: HPE
Software Availability: Dec-2020

Compiler Version Notes

```
C               | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
               | 544.nab_r(base, peak)
-----------------------------
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
-----------------------------

C++             | 508.namd_r(base, peak) 510.parest_r(base, peak)
-----------------------------
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
-----------------------------

C++, C          | 511.povray_r(peak)
-----------------------------
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
-----------------------------

C++, C          | 511.povray_r(base) 526.blender_r(base, peak)
-----------------------------
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
-----------------------------

C++, C          | 511.povray_r(peak)
-----------------------------
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
-----------------------------

(Continued on next page)
```
Compiler Version Notes (Continued)

Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Application</th>
<th>CPU2017 Floating Point Rate Result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SPECrate®2017_fp_base = 208</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPECrate®2017_fp_peak = 220</td>
</tr>
</tbody>
</table>

C++, C

<table>
<thead>
<tr>
<th>Platform</th>
<th>Application</th>
<th>CPU2017 Floating Point Rate Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C++, C, Fortran

<table>
<thead>
<tr>
<th>Platform</th>
<th>Application</th>
<th>CPU2017 Floating Point Rate Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortran

<table>
<thead>
<tr>
<th>Platform</th>
<th>Application</th>
<th>CPU2017 Floating Point Rate Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortran, C

<table>
<thead>
<tr>
<th>Platform</th>
<th>Application</th>
<th>CPU2017 Floating Point Rate Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copyright (C) 1985-2020 Intel Corporation. All rights reserved.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPECraten®2017_fp_base = 208
SPECraten®2017_fp_peak = 220

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jul-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Compiler Version Notes (Continued)

==
Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
--
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
 Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
**

Fortran, C | 521.wrf_r(peak)
--
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
 Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
**

Fortran, C | 521.wrf_r(base) 527.cam4_r(base, peak)
--
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on
 Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
**

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Copyright 2017-2021 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

SPECrate®2017_fp_base = 208
SPECrate®2017_fp_peak = 220

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jul-2021
Hardware Availability: Jun-2021
Software Availability: Dec-2020

Base Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
ifort icx
Benchmarks using both C and C++:
icpx icx
Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactusBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div
-qopt-prefetch -ffinite-math-only

(Continued on next page)
Base Optimization Flags (Continued)

Fortran benchmarks (continued):
-`-qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4`
-`-nostandard-realloc-lhs -align array32byte -auto`
-`-mbranches-within-32B-boundaries -ljemalloc`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both Fortran and C:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3 -ipo`
-`-no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-multiple-gather-scatter-by-shuffles`
-`-mbranches-within-32B-boundaries -nolocal-realloc-lhs`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both C and C++:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4`
-`-mbranches-within-32B-boundaries -ljemalloc`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using Fortran, C, and C++:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -O3`
-`-no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-multiple-gather-scatter-by-shuffles`
-`-mbranches-within-32B-boundaries -nolocal-realloc-lhs`
-`-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Peak Compiler Invocation

C benchmarks:
- icx

C++ benchmarks:
- icpx

Fortran benchmarks:
- ifort

Benchmarks using both Fortran and C:
- 521.wrf_r: ifort icc

(Continued on next page)
Peak Compiler Invocation (Continued)

527.cam4_r: ifort icx

Benchmarks using both C and C++:
511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Peak Portability Flags
Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
-Ofast -qopt-mem-layout-trans=4
-fimf-accuracy-bits=14:sqrt
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
508.namd_r: basepeak = yes
510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
503.bwaves_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only

(Continued on next page)
Peak Optimization Flags (Continued)

503.bwaves_r (continued):
- qopt-multiple-gather-scatter-by-shuffles
- qopt-mem-layout-trans=4 -nostandard-realloc-lhs
- align array32byte -auto -mbranches-within-32B-boundaries
- ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

549.fotonik3d_r: basepeak = yes

554.roms_r: Same as 503.bwaves_r

Benchmarks using both Fortran and C:

521.wrf_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-nostandard-realloc-lhs -align array32byte -auto
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactusBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.xml
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10 Plus
(2.30 GHz, Intel Xeon Gold 6314U)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 208</th>
<th>SPECrate®2017_fp_peak = 220</th>
</tr>
</thead>
</table>

CPU2017 License: 3	Test Date:
Test Sponsor: HPE	Jul-2021
Tested by: HPE	Hardware Availability:
	Jun-2021
	Software Availability:
	Dec-2020

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-07-13 01:15:54-0400.
Report generated on 2021-08-04 18:42:17 by CPU2017 PDF formatter v6442.
Originally published on 2021-08-03.