(29 Apr 94)
 
 
                      ******************************
                      *                            *
                      * Section 3 - Input Examples *
                      *                            *
                      ******************************
 
 
              The distribution tape contains a number of short test
          examples, named EXAM*.INP.  You should run all of these
          tests to be sure you have installed GAMESS correctly.  The
          correct answers are shown in the comments preceeding each
          of the short input tests.  The "correct" answers are
          obtained on a RS/6000 computer, other machines may differ
          in the last energy digit, or the last couple of gradient
          digits.
 
              The examples are listed in the final pages of this
          section, and serve as a useful tutorial about the kind of
          calculations GAMESS can do.
 
              Example  Description
              -------  -----------
                 1     CH2 RHF geometry optimization
                 2     CH2 UHF + gradient
                 3     CH2 ROHF + gradient
                 4     CH2 GVB + gradient
                 5     CH2 CI
                 6     CH2 MCSCF geometry optimization
                 7     HPO RHF + gradient
                 8     H2O RHF
                 9     H2O MCSCF
                10     H2O RHF + hessian
                11     HCN RHF IRC
                12    HCCH RHF geometry optimization
                13     H2O RHF properties
                14     H2O CI transition moment
                15     C2- GVB/ROHF on 2-pi-u state
                16      Si GVB/ROHF on 3-P state
                17     CH2 GVB/ROHF + hessian
                18      P2 RHF with effective core potential
                19     CH2 spin-orbit coupling
                20     NH3 MP2 trudge optimization
                21     CH3 OS-TCSCF hessian
                22    H3CN UHF + UMP2 energy
                23   SiH3- PM3 geometry optimization
                24     H2O SCRF test case
                25         internal coordinate example
 
              The distribution tape contains a number of larger test
          jobs, named BENCH*.INP.  It is a good idea to run a few of
          these tests along with all the short ones described above.
          BENCH tests 1, 2, 3, 4, 6, and 10 are of moderate length.
          The others are considerably longer, and you might not want
          to run them if your machine is a "well supported" model.
 

 
                               GAMESS benchmarks
 
              The distribution tape for GAMESS contains some larger
          BENCH*.INP tests.  These jobs are a more strenuous test of
          GAMESS, as more memory, CPU, and disk space is required to
          run them.  They also serve as a good comparison of various
          machines performance.  These jobs are
 
                                                     number of   disk
          Test Molecule  Method           Basis set  AOs  CSFs  Mbytes
           1  SiC2H6    RHF direct SCF    6-31G*      61     1    14
           2  SiH2      MCSCF             6-31G**     29    51     5
           3  Si2H4     second order CI   6-31G*      46  4600    64
           4  SiC3H8    RHF               6-31G*      80     1    38
           5  C3H4      MCSCF + gradient  DH(d)       53    20    84
           6  O2+       CI transition     Duij(2d)    60   504    43
           7  OHBr      MCSCF             3-21G(d,p)  49   110    55
           8  SnC5H6    GVB-PP(3)         3-21G*      96     6   105
           9  C6H8      UHF               DH(d,p)    130     1   175
          10  P2H4+     ROHF + gradient   DH(d)       56     1    14
          11  HPPH      second order CI   6-31G*      42 55017   490
          12  SbC4H4NO2 RHF + gradient    3-21G*     110     1   111
          13  FOOF      RHF + hessian     6-31G*      60     1    98
 
              Performance for a representative subset of these jobs
          is reported on the next page.  All times were obtained
          with the GAMESS version of Dec 6, 1989 or later.  Any
          older version of GAMESS will run significantly slower than
          the times reported here.
 
              The machines tested, their location, operating system,
          and FORTRAN version are summarized.  Machines with vector
          capability are marked "v".  All runs are for single CPUs,
          although many of the machines are multiprocessor models.
          Times are measured in CPU seconds, and are normalized to the
          performance of IBM's desktop 42 MHz RS/6000 system.
 
              It is important to note that the machines were in
          general running other jobs at the time the benchmarks were
          run, and that background load can have a big influence on
          the reproducibility of times.  Of course, the size and
          characteristics of the disks used, and total system RAM
          also influence performance.  Most of the jobs were run
          using 750,000 words in the GAMESS dynamic memory pool, but
          the larger systems frequently use more, again influencing
          the times.  Usually, only one trial run was made.  All of
          these variables mean the results should be regarded only
          as an informal benchmark.
 

 
               The operating systems tested are
 
        microVAX II - NDSU Chemistry, VMS 5.0, FORTRAN 5.3
        VAXstation 3200 - NDSU Chemistry, VMS 5.2, FORTRAN 5.3
        SUN SPARCstn 1 - U. Utah, SunOS 4.0.3c, f77 1.2
        SUN SPARCstn 370 - U. Alberta, SunOS, f77 (&Iowa State)
        DECstation 3100 - NDSU Chemistry, Ultrix 3.1, MIPS f77 1.0
        486DX2/66 MHz - United Tech., Linux 0.99.13, f2c+gcc
        DECstation 5000-120 - NDSU Chemistry, Ultrix 4.2, f77 3.1
            (this is a 20 Mhz R3000A, there are many other models)
        SUN SPARCstn 2 - U.Texas-Dallas, SunOS 4.1.1, f77 1.3.1
      v Stardent 3000 - NEC corporation
        Sumitomo SG330 - Mie University, Japan
        SGI 4D/380S - Iowa State, Irix 3.3.1, MIPS FORTRAN 2.00
      v Convex C220 - Univ. Twente, UNIX v8.0, fc v6.0.0.0
        SGI Indy - ISU Chemistry, Irix 5.1.1.3, f77 4.0 -mips2
      v Cray Y-MP EL/232 - Mitsui Petrochem, Unicos 6.16, cft77 5.0.3
        SGI 4D/440VGX - U.Penn, Irix 3.3.2
        IBM RS/6000 m520 - NDSU chemistry, AIX 3.1.2, xlf 1.01
        DECstation 5000-240 - Ames Lab, Ultrix 4.2a, f77 3.2
        SGI 4D/35 - NDSU Chemistry, Irix 4.0.1, f77 3.4.1
        IBM RS/6000 m530 - NDSU chemistry, AIX 3.1.5, xlf 2.2
        HP 9000-720 - Tohoku University, Japan
        VAX 7610 - 3M Corp, VMS 5.5-2, FORTRAN 6.0-31
        Sun SPARCstn 10 - Mie U., SunOS 4.1.3, f77 2.0.1
        HP 9000-715 - Mat. Res. Lab, Victoria - HPUX, f77 +O2
        SGI Indigo2 (r4000, 100 MHz) - Iowa State, Irix 4.0.5H, f77 -mips2
        SGI Indigo Elan (R4000, 100 MHz) - SGI, Irix 4.0.5F, f77 -mips2
        SGI Challenge L (R4400, 100 MHz) - SGI, Irix 5.0beta, f77 -mips2
        IBM RS/6000 m350 - ISU chemistry, AIX 3.2.2, xlf 2.2.1
      v VAX 9000-410 - Aristotle U. Thessaloniki, VMS 5.5 (no DXML)
      v IBM 3090-600J - U.Minnesota, AIX/370 1.2, VS FORTRAN 2.5.0
        IBM RS/6000 m560 - U.Alberta, AIX 3.2.3, xlf 2.3
        DEC AXP 3000-300 - Virginia Tech, OSF/1
        DEC AXP 3000-400S - Iowa State, openVMS 1.0, FORTRAN 6.0 (133 MHz)
        DEC AXP 3000-400S - Iowa State, OSF/1 1.2, DEC FORTRAN 3.3 (133 MHz)
        SGI Indigo2 (R4400, 150 MHz) - Odense U., Irix 5.1.1, f77 -mips2
        Fujitsu M1800/20 - RIKEN Japan, UXP/M
      v NEC SX-3 - NEC Systems Lab, SX-3/22, SUPER-UX 3.1H, f77sx  
        IBM RS/6000 m370 - ISU chemistry, AIX 3.2.3E, xlf 2.3.0
        IBM RS/6000 m580 - United Technologies Corp.
        HP 9000-735 -Australian Nat. U. - HPUX, f77 +O2
      v Cray Y-MP/864 - SDSC (San Diego), Unicos 6.1.6, cft77 5.0.3.14
        HITAC M-880 - U.Tokyo, VOS3/AS, FORT77/HAP V25-OA
      v IBM ES/9000 m900 - CNSF (Cornell), AIX 1.2.1, VS FORTRAN 2.5.0
      v Fuj. VP2200 - Australian Nat. U., UXP/M V10L10, F77 EX/VP V12L10
        DEC AXP 3000-500X - U.Minnesota, OSF/1 (200 MHz)
        DEC AXP 3000-600S - Texas Tech., OSF/1 1.3
      v Cray C90 - NERSC, Unicos 7.C, cft77 5.0.3.11
        IBM RS/6000 m590 - Norsk Hydro MolSim-Lab., AIX 3.2.5 xlf 2.3
 

 
       -----------------------------------------------------------------
                        ROHF grad    RHF E        RHF hess     MCSCF E
                         BENCH10     BENCH4       BENCH13      BENCH7
                         -------     ------       -------      ------
       microVAX II     7644 (    ) 8716 (67.0) 47620 (86.6) 47472 (74.4)
       VAXstn 3200     2395 (    ) 2525 (19.4) 13075 (23.8) 14396 (22.6)
       Sun SPARCstn 1  1242 (    ) 1430 (11.0)  6632 (12.1)  7547 (11.8)
       Sun SPARCstn 370 902 (    )  859 (6.61)  3945 (7.17)  4314 (6.76)
       DECstn 3100      693 (6.36)  689 (5.30)  3070 (5.58)  4056 (6.36)
       486DX2/66        578 (5.30)  696 (5.35)  2943 (5.35)  3752 (5.88)
       DECstn 5000-120  485 (4.45)  583 (4.48)  2302 (4.19)  3089 (4.84)
       Sun SPARCstn 2   540 (    )  537 (4.13)  2366 (4.30)  2634 (4.12)
     v Stardent 3000    462 (    )  486 (3.73)  1638 (2.98)  1560 (2.44)
       Sumitomo SG330   280 (2.11)  337 (2.59)  1791 (3.26)  1982 (3.11)
       SGI 4D/380S      346 (    )  325 (2.50)  1608 (2.92)  1841 (2.89)
     v Convex C220      309 (    )  329 (2.53)  1163 (2.11)  1459 (2.29)
       SGI Indy         290 (2.66)  325 (2.50)  1292 (2.35)  1147 (    )
     v Cray Y-MP EL/232 296 (    )  321 (2.47)   975 (1.77)   945 (1.48)
       SGI 4D/440VGX    296 (    )  288 (2.21)  1414 (2.57)  1688 (2.65)
       IBM RS/6000 m520 263 (    )  284 (2.18)  1137 (2.07)  1591 (2.49)
       DECstn 5000-240  232 (2.13)  294 (2.26)  1142 (2.08)  1449 (2.27)
       SGI 4D/35        236 (2.17)  255 (1.96)  1451 (2.64)  1392 (2.18)
       IBM RS/6000 m530 170 (1.56)  204 (1.57)   782 (1.42)  1012 (1.59)
       VAX 7610         161 (1.48)  172 (1.32)   830 (1.51)   888 (1.39)
       HP 9000-720      138 (1.27)  144 (1.11)   785 (1.43)  1023 (1.60)
       HP 9000-715      141 (1.29)  158 (1.21)   715 (1.30)   829 (1.30)
       Sun SPARCstn 10  125 (1.15)  155 (1.19)   691 (1.26)   710 (1.11)
       SGI Indigo2      133 (1.22)  137 (1.05)   711 (1.29)   701 (1.10)
       SGI Indigo Elan  118 (1.08)  125 (0.96)   645 (1.17)   597 (0.94)
       IBM RS/6000 m350 109 ( 1  )  130 ( 1  )   550 ( 1  )   638 ( 1  )
       SGI Challenge L  105 (0.96)  114 (0.88)   619 (1.13)   547 (0.86)
     v VAX 9000-410     127 (1.17)  120 (0.92)   441 (0.80)   633 (0.99)
     v IBM 3090-600J/VF 120 (    )  119 (0.92)   420 (0.76)   467 (0.73)
       DEC AXP 3000-300  95 (0.87)  110 (0.85)   475 (0.86)   532 (0.83)
       IBM RS/6000 m560  83 (0.76)   94 (0.72)   394 (0.72)   487 (0.76)
   VMS DEC AXP 3000-400S 84 (0.77)   93 (0.72)   320 (0.58)   437 (0.68)
       SGI Indigo2 (150) 70 (0.64)   78 (0.60)   434 (0.78)   392 (0.61)
       Fujitsu M1800/20  61 (0.56)   66 (0.51)   310 (0.56)   360 (0.56)
     v NEC SX-3          66 (0.60)   87 (0.67)   197 (0.36)   157 (0.25)
       IBM RS/6000 m370  64 (0.59)   74 (0.57)   366 (0.67)   391 (0.61)
   OSF DEC AXP 3000-400S 72 (0.66)   73 (0.56)   324 (0.59)   388 (0.61)
       IBM RS/6000 m580  59 (0.54)   69 (0.53)   322 (0.59)   381 (0.60)
       HP 9000-735       50 (0.46)   59 (0.45)   291 (0.53)   365 (0.57)
     v Cray Y-MP/864     60 (0.55)   68 (0.52)   188 (0.34)   197 (0.31)
       HITAC M-880       54 (0.50)   59 (0.45)   297 (0.54)   362 (0.57)
     v IBM ES/9000-900   53 (0.49)   59 (0.45)   201 (0.37)   187 (0.29)
       DEC AXP 3000-600S 52 (0.48)   53 (0.41)   230 (0.42)   279 (    )
     v Fujitsu VP2200    50 (0.46)   57 (0.44)   148 (0.27)   127 (0.20)
       DEC AXP 3000-500X 46 (0.42)   50 (0.38)   214 (0.39)   261 (0.41)
     v Cray C90          42 (0.39)   49 (0.38)   129 (0.23)   137 (0.21)
       IBM RS/6000 m590  33 (0.30)   33 (0.25)   147 (0.28)   202 (0.32)
       -----------------------------------------------------------------
 
             Note that HF energy and gradient runs are pretty much
             scalar, whereas hessian runs and MCSCF/CI use a vector
             processor effectively.
 
             Many of the timings preceed the Oct 18, 1991 version
             of GAMESS, which converges in fewer iterations for B10.
 

 
 
          ! EXAM01.
          !    1-A-1 CH2    RHF geometry optimization using GAMESS.
          !
          !    Although internal coordinates are used (COORD=ZMAT),
          !    the optimization is done in Cartesian space (NZVAR=0).
          !    This run uses a criterion (OPTTOL) on the gradient
          !    which is much tighter than is normally used.
          !
          !    This job tests the sp integral module, the RHF module,
          !    and the geometry optimization module.
          !
          !    Using the default search METHOD=BAKER,
          !    FINAL E= -37.2322678015, 8 iters, RMS grad= 0.0264308
          !    FINAL E= -37.2308175316, 8 iters, RMS grad= 0.0320881
          !    FINAL E= -37.2375723414, 7 iters, RMS grad= 0.0056557
          !    FINAL E= -37.2379944432, 7 iters, RMS grad= 0.0017904
          !    FINAL E= -37.2380387851, 8 iters, RMS grad= 0.0003389
          !    FINAL E= -37.2380397692, 6 iters, RMS grad= 0.0000030
          !
           $CONTRL SCFTYP=RHF RUNTYP=OPTIMIZE COORD=ZMT NZVAR=0 $END
           $SYSTEM TIMLIM=2 MEMORY=100000 $END
           $STATPT OPTTOL=1.0E-5  $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $GUESS  GUESS=HUCKEL $END
           $DATA
          Methylene...1-A-1 state...RHF/STO-2G
          Cnv  2
          
          C
          H  1 rCH
          H  1 rCH  2 aHCH
          
          rCH=1.09
          aHCH=110.0
           $END
 

 
 
          ! EXAM02.
          !    3-B-1 CH2    UHF calculation on methylene ground state.
          !
          !    This test uses the default choice, COORD=UNIQUE, to
          !    enter the molecule.  Only the symmetry unique atoms
          !    are given, and they must be given in the orientation
          !    which GAMESS expects.
          !
          !    This job tests the UHF energy and the UHF gradient.
          !    In addition, the orbitals are localized.
          !
          !    The initial energy is -37.228465066.
          !    The FINAL energy is -37.2810867258 after 11 iterations.
          !    The unrestricted wavefunction has <S**2> = 2.013.
          !    The RMS gradient is 0.027589766.
          !    The dipole moment is 0.016188.
          !    The spin density at Hydrogen is -0.0167104.
          !    Mulliken, Lowdin charges on C are -0.020584, 0.018720.
          !    FINAL localization sums are 30.57 and 25.14 Debye**2.
          !
           $CONTRL SCFTYP=UHF MULT=3 RUNTYP=GRADIENT LOCAL=BOYS $END
           $SYSTEM TIMLIM=1 MEMORY=100000 $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $GUESS  GUESS=HUCKEL $END
           $DATA
          Methylene...3-B-1 state...UHF/STO-2G
          Cnv  2
          
          Carbon     6.0
          Hydrogen   1.0    0.0      0.82884      0.7079
           $END
 

 
 
          ! EXAM03.
          !    3-B-1 CH2  ROHF calculation on methylene ground state.
          !    The wavefunction is a pure triplet state (<S**2> = 2),
          !    and so has a higher energy than the second example.
          !
          !    For COORD=CART, all atoms must be given, and as in the
          !    present case, these may be in an unoriented geometry.
          !    GAMESS deduces which atoms are unique, and orients
          !    the molecule appropriately.  The geometry here is thus
          !    identical to the second example.
          !
          !    This job tests the ROHF wavefunction and gradient code.
          !    It also tests the direct SCF procedure.
          !
          !    The initial energy is -37.228465066.
          !    The FINAL energy is -37.2778767089 after 7 iterations.
          !    The RMS gradient is 0.027505548.
          !    The dipole moment is 0.025099.
          !    The Hydrogen atom spin density is 0.0129735.
          !    Mulliken, Lowdin charges on C are -0.020346, 0.019470.
          !
           $CONTRL SCFTYP=ROHF MULT=3 RUNTYP=GRADIENT COORD=CART $END
           $SYSTEM TIMLIM=1 MEMORY=100000 $END
           $SCF    DIRSCF=.TRUE. $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $GUESS  GUESS=HUCKEL $END
           $DATA
          Methylene...3-B-1 state...ROHF/STO-2G
          Cnv  2
          
          Hydrogen   1.0    0.82884     0.7079   0.0
          Carbon     6.0
          Hydrogen   1.0   -0.82884     0.7079   0.0
           $END
 

 
 
          ! EXAM04.
          !    1-A-1 CH2    TCSCF calculation on methylene.
          !    The wavefunction has two configurations, exciting
          !    the carbon sigma lone pair into the out of plane p.
          !
          !    Note that the Z-matrix used to input the molecule
          !    can include identifying integers after the element
          !    symbol, and that the connectivity can then be given
          !    using these labels rather than integers.
          !
          !    This job tests the GVB wavefunction and gradient.
          !
          !    The initial GVB-PP(1) energy is -37.187342653.
          !    The FINAL energy is -37.2562020559 after 10 iters.
          !    The GVB CI coefs are 0.977505 and -0.210911, giving
          !    a pair overlap of 0.64506.
          !    Mulliken, Lowdin charges for C are 0.020810, 0.055203.
          !    The RMS gradient = 0.019618475.
          !    The dipole moment is 1.249835.
          !
           $CONTRL SCFTYP=GVB  RUNTYP=GRADIENT  COORD=ZMT  $END
           $SYSTEM TIMLIM=1 MEMORY=100000 $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $SCF    NCO=3  NSETO=0  NPAIR=1  $END
           $DATA
          Methylene...1-A-1 state...GVB...one geminal pair...STO-2G
          Cnv  2
          
          C1
          H1  C1 rCH
          H2  C1 rCH  H1 aHCH
          
          rCH=1.09
          aHCH=99.0
           $END
          ! normally a GVB-PP calculation will use GUESS=MOREAD
           $GUESS  GUESS=HUCKEL  $END
 

 
 
          ! EXAM05
          !    1-A-1 CH2    CI calculation.
          !    The wavefunction is a full CI within the minimal
          !    basis, except the 1s carbon orbital is constrained
          !    to double occupancy.  56 configurations are generated
          !    by the $DRT group, and 2 CI roots are found.
          !
          !    This job tests the GUGA-CI code, note that gradients
          !    are not available for CI.
          !
          !    State 1 EIGENvalue = -37.2798768747, c(1) = 0.932805.
          !    State 2 EIGENvalue = -37.0372982302, c(3) = 0.933057.
          !    The ground state dipole moment is 1.226756 Debye.
          !
           $CONTRL SCFTYP=CI $END
           $SYSTEM TIMLIM=1 MEMORY=100000 $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $DATA
          Methylene...1-A-1 state...CI...STO-2G basis
          Cnv   2
 
          Carbon    6.0
          Hydrogen  1.0      0.0       0.82884        0.7079
           $END
          !
          !    Usually GUESS=MOREAD is used to get converged MOs
          !    from a prior run using any sort of SCF (except UHF).
          !
           $GUESS  GUESS=HUCKEL $END
           $DRT    GROUP=C2V IEXCIT=6 NFZC=1 NDOC=3 NVAL=3 $END
          !    look at 1-1A1 and 2-1A1 states
           $GUGDIA NSTATE=2 $END
           $GUGDM  NFLGDM(1)=1,1 $END
 

 
 
          ! EXAM06.
          !    1-A-1 CH2    MCSCF methylene geometry optimization.
          !    The two configuration ansatz is the same as used in
          !    the fourth example.
          !
          !    The optimization is done in internal coordinates,
          !    as NZVAR is non-zero.   Since a explicit $ZMAT is
          !    given, these are used for the internal coordinates,
          !    rather than those used to enter the molecule in
          !    the $DATA.  (Careful examination of this trivial
          !    triatomic's input shows that $ZMAT is equivalent
          !    to $DATA in this case.  You would normally give
          !    $ZMAT only if it is somehow different.)
          !
          !    This job tests the MCSCF wavefunction and gradient.
          !
          !    At the initial geometry:
          !    The initial energy is -37.187342653,
          !    the FINAL E= -37.2562020530 after 8 iterations,
          !    the RMS gradient is 0.0256392.
          !
          !    After 4 steps,
          !    FINAL E= -37.2581791665, RMS gradient=0.0000177,
          !    r(CH)=1.1243569, ang(HCH)=98.8161138, dipole=1.212792
          !
           $CONTRL SCFTYP=MCSCF RUNTYP=optimize NZVAR=3 COORD=ZMT $END
           $SYSTEM TIMLIM=6 MEMORY=100000 $END
           $BASIS  GBASIS=STO NGAUSS=2 $END
           $DATA
          Methylene...1-A-1 state...MCSCF/STO-2G
          Cnv  2
 
          C
          H 1 rCH
          H 1 rCH 2 aHOH
 
          rCH=1.09
          aHOH=99.0
           $END
           $ZMAT   IZMAT(1)=1,1,2,   1,1,3,   2,2,1,3  $END
          !
          ! Normally one starts a MCSCF run with converged SCF
          ! orbitals, as Huckel orbitals normally do not converge.
          ! Even if they do converge, the extra iterations are
          ! very expensive, so use MOREAD for your runs!
          !
           $GUESS  GUESS=HUCKEL $END
           $MCSCF  MAXIT=10  $END
          !
          ! two active electrons in two active orbitals.
          !
           $DRT    GROUP=C2V FORS=.TRUE. NMCC=3 NDOC=1 NVAL=1 $END
 

 
          ! EXAM 14.
          !  CI transition moments.  Water, using RHF/STO-3G MOs.
          !  All orbitals are occupied, transition is 1-1A1 to 2-1A1.
          !
          !  E(STATE 1)= -75.0101113548, E(STATE 2)= -74.3945819375
          !  Dipole LENGTH is <Q>=0.392614
          !  Dipole VELOCITY is <d/dQ>=0.368205
          !
           $CONTRL SCFTYP=CI RUNTYP=TRANSITN UNITS=BOHR $END
           $SYSTEM TIMLIM=1 MEMORY=100000 $END
           $BASIS  GBASIS=STO  NGAUSS=3 $END
           $DATA
          WATER MOLECULE...STO-3G...TRANSITION MOMENT
          CNV      2
          
          OXYGEN      8.0   0.0   0.0      0.0
          HYDROGEN    1.0   0.0   1.428   -1.096
           $END
          !            standard SD-CI calculation
           $DRT1   GROUP=C2V IEXCIT=2 NFZC=1 NDOC=4 NVAL=2 $END
           $TRANST $END

          --- RHF ORBITALS --- GENERATED AT 09:24:04    18-FEB-88
          WATER MOLECULE...STO-3G...TRANSITION MOMENT
          E(RHF)=  -74.9620539825, E(NUC)=    9.2384802989,    8 ITERS
           $VEC1
           1  1 9.94117078E-01...
           $END
 

 
 
          ! EXAM 15.
          !    C2- diatom, in the electronic state doublet-pi-u.
          !    This illustrates a open shell SCF calculation, using
          !    fed in coupling coefficients, and the GVB/ROHF code.
          !
          !    The FINAL energy is -75.5579181071 after 11 iterations.
          !
           $CONTRL SCFTYP=GVB  MULT=2  ICHARG=-1  UNITS=BOHR  $END
           $SYSTEM TIMLIM=15 MEMORY=170000 $END
           $BASIS  GBASIS=DH NDFUNC=1 POLAR=DUNNING $END
           $DATA
          C2-...DOUBLET-PI-UNGERADE...OPEN SHELL SCF
          DNH      4
 
          CARBON      6.0     0.0  0.0  -1.233
           $END
           $GUESS  GUESS=MOREAD NORB=30
                   NORDER=1  IORDER(5)=7,5,6  $END
           $SCF    NCO=5  NSETO=1  NO=2  COUPLE=.TRUE.
                     F(1)=1.0, 0.75
                 ALPHA(1)=2.0, 1.5, 1.00
                  BETA(1)=-1., -.75, -0.5    $END
 
          --- RHF ORBITALS --- GENERATED AT 14:05:16THU MAR 24/88
           CC  R(C-C) = 2 * 1.233 BOHR   BAS=831+1D
          E(RHF)=  -75.3856001855, E(NUC)=   14.5985401460,   18 ITERS
           $VEC
           1  1-7.06500288E-01...
           $END
 

 
 
          ! EXAM 16.
          !  ROHF/GVB on Si 3-P state, using Gordon's 6-31G basis.
          !
          !  The purpose of this example is two-fold, namely to
          !  show off the open shell capabilities of the GVB code,
          !  and to emphasize that the 6-31G basis for Si in GAMESS
          !  is Mark Gordon's version.  The basis stored in GAMESS is
          !  completely optimized, whereas Pople's uses the core from
          !  from a 6-21G set, reoptimizing only the -31G part.
          !  The energy from Pople's basis would be only -288.828405.
          !
          !  Jacobi diagonalization is intrinsically slow, but in this
          !  case results in pure subspecies in degenerate p irreps.
          !  In fact, these may be labeled in the highest Abelian
          !  subgroup of the atomic point group Kh.
          !
          !  The FINAL energy is -288.8285729745 after 8 iterations.
          !
           $CONTRL SCFTYP=GVB MULT=3 $END
           $SYSTEM TIMLIM=2 MEMORY=100000 KDIAG=3 $END
           $BASIS  GBASIS=N31 NGAUSS=6 $END
           $DATA
          Si...3-P term...ROHF in full Kh symmetry
          Dnh 2
 
          Silicon     14.
           $END
           $GUESS  GUESS=HUCKEL $END
           $SCF    NCO=6  NSETO=1  NO=3   COUPLE=.TRUE.
                   F(1)=1.0, 0.333333333333333
                   ALPHA(1)=2.0,  0.66666666666667,  0.16666666666667
                   BETA(1)=-1.0, -0.33333333333333, -0.16666666666667
           $END
 

 
 
          ! EXAM 17.
          !  Analytic hessian for an open shell SCF function.
          !  Methylene's 1-B-1 excited state.
          !  FINAL energy=  -38.3334724780 after 7 iterations.
          !  The FREQuencies are 1224.19, 3563.44, 3896.23
          !
           $CONTRL SCFTYP=GVB  MULT=1  RUNTYP=HESSIAN  UNITS=BOHR $END
           $SYSTEM TIMLIM=4 MEMORY=100000 $END
           $SCF    NCO=3  NSETO=2  NO(1)=1,1  NPAIR=0 $END
           $ZMAT   IZMAT(1)=1,1,2,   1,1,3,   2,2,1,3   $END
           $GUESS  GUESS=HUCKEL  $END
           $BASIS  GBASIS=STO NGAUSS=3 $END
           $DATA
          METHYLENE...1-B-1 STATE...ROHF...STO-3G BASIS
          CNV      2
 
          CARBON      6.0    0.0   0.0            0.0041647278
          HYDROGEN    1.0    0.0   1.8913952563   0.7563907037
           $END
 
 
 
 
          ! EXAM 18.
          !  effective core potential...diatomic P2...RHF/CEP-31G*
          !  See Stevens,Basch,Krauss, J.Chem.Phys. 81,6026-33(1984).
          !  GAMESS FINAL E= -12.6956517413, RMS gradient=0.000354618
          !  A separate run gives E(P)= -6.32635, so De= 26.95 kcal/mol
          !
           $CONTRL SCFTYP=RHF RUNTYP=GRADIENT ECP=SBK NZVAR=1 $END
           $SYSTEM TIMLIM=15 MEMORY=200000 $END
           $GUESS  GUESS=HUCKEL $END
           $ZMAT   IZMAT(1)=1,1,2 $END
           $DATA
          diatomic phosphorous
          Dnh      4
           
          PHOSPHORUS 15.0    0.0      0.0        0.9395
             SBK
             D 1
               1 0.45 1.0
           
           $END
 

 
 
          ! EXAM 19.
          ! Spin-orbit coupling example.
          ! This run duplicates the one electron result shown in Table
          ! 3 of T.R.Furlani,H.F.King, J.Chem.Phys. 82, 5577-83(1985).
          ! Note that the lower multiplicty DRT1 generates two CSFs,
          ! with one of the singlet-delta states formed by xx-yy, and
          ! the desired singlet-sigma-plus as the 2nd root: xx+yy.
          !       E(3s-) = -54.9382257056
          !       E(1s+) = -54.7988368491
          !       SOC(z) = -114.3851
          !
           $CONTRL SCFTYP=CI MULT=3 RUNTYP=SPINORBT UNITS=BOHR $END
           $SYSTEM TIMLIM=2 MEMORY=100000 $END
          !      triplet-sigma-minus to singlet-sigma-plus SOC
           $TRANST NFZC=3 NOCC=5 NUMVEC=1 NUMCI=2 IROOTS(1)=2,1 $END
           $DRT1   GROUP=C4V IEXCIT=2 NFZC=3 NDOC=1 NVAL=1 $END
           $DRT2   GROUP=C4V IEXCIT=2 NFZC=3 NALP=2 $END
          !
          !   Since the 1e- spin orbit integrals cannot use L shells,
          !   we must input the 6-31G set for nitrogen by hand.
          !
           $DATA
          Imidogen radical
          Cnv 4
 
          NITROGEN    7.0
             S    6
              1  4173.511460      0.001834772
              2   627.457911      0.01399463
              3   142.902093      0.06858655
              4    40.234329      0.2322409
              5    12.820213      0.4690699
              6     4.390437      0.3604552
             S    3
              1    11.626362     -0.1149612
              2     2.716280     -0.1691175
              3     0.772218      1.145852
             P    3
              1    11.626362      0.06757974
              2     2.716280      0.3239073
              3     0.772218      0.7408951
             S    1
              1     0.212031      1.0
             P    1
              1     0.212031      1.0
 
          HYDROGEN    1.0     0.0   0.0   1.9748
             N31 6
 
           $END
          --- ROHF ORBITALS --- GENERATED AT 12:04:18 29 MAR 90 ( 88)
          IMIDOGEN RADICAL
          E(ROHF)= -54.9382257007, E(NUC)=    3.5446627507,    8 ITERS
           $VEC1
           1  1 9.97073281E-01...
           $END
 

 
 
          ! EXAM 20.
          !  MP2 (frozen core) geometry optimization of NH3.
          !  Since GAMESS cannot compute MP2 gradients, this uses the
          !  slow nongradient TRUDGE optimization, in HINT coords.
          !
          !  The optimized geometry from Table 6.2 in Hehre et al.,
          !  "Ab initio Molecular Orbital Theory" is
          !                 r(N-H)=1.017  Angs, <(H-N-H)=106.3  deg.
          !  This run gives r(N-H)=1.0176 Angs, <(H-N-H)=106.21 deg.
          !  with a final E(MP2)=-56.3542104882 Eh
          !
           $CONTRL MPLEVL=2 COORD=HINT SCFTYP=RHF RUNTYP=TRUDGE $END
           $SYSTEM TIMLIM=30 MEMORY=100000 $END
           $TRUDGE OPTMIZ=GEOMETRY NPAR=2 IEX(1)=21,22 P(1)=1.02 $END
           $GUESS  GUESS=HUCKEL $END
           $BASIS  GBASIS=N31 NGAUSS=6 NDFUNC=1 $END
           $DATA
          NH3...6-31G*...MP2...TRUDGE OPTIMIZATION OF GEOMETRY
          CNV      3
 
          NITROGEN   7.   LC 0.0   0.0   0.0   -   O   K
          HYDROGEN   1.  PCC 1.0  68.34  0.0   +   O   K  I
           $END
 

 
 
          ! EXAM 21.
          !   Open shell two configuration SCF analytic hessian.
          !      M.Duran, Y.Yamaguchi, H.F.Schaefer III
          !         J.Phys.Chem. 1988, 92, 3070-3075.
          !   Least motion insertion of CH into H2, which leads to
          !   a 3rd order hypersaddle point on the 2-B-1 surface.
          !
          !   Literature values are
          !      FINAL E=-39.25104,      C1=0.801,    C2=-0.598
          !      FREQ= 4805i, 1793i, 1317i, 989, 2914, 3216
          !   GAMESS obtains
          !      FINAL E=-39.2510351248, C1=0.801141, C2=-0.598476
          !      FREQ= 4805.55i, 1793.09i, 1317.50i,
          !      FREQ=  988.80, 2913.51, 3216.43
          !
           $CONTRL SCFTYP=GVB MULT=2 RUNTYP=HESSIAN $END
           $SYSTEM TIMLIM=25 MEMORY=100000 $END
           $GUESS  GUESS=MOREAD NORB=16 NORDER=1 IORDER(4)=6,4,5 $END
           $SCF    NCO=3 NSETO=1 NO=1 NPAIR=1 CICOEF(1)=0.7,-0.7 $END
           $DATA
          Insertion of CH into H2...OS-TCSCF ansatz...DZ basis
          CNV 2
 
          CARBON   6.0   0.0000000000   0.0000000000  -0.0001357549
            S  6
              1 4232.61    0.002029
              2  634.882   0.015535
              3  146.097   0.075411
              4   42.4974  0.257121
              5   14.1892  0.596555
              6    1.9666  0.242517
            S  1
              1    5.1477  1.0
            S  1
              1    0.4962  1.0
            S  1
              1    0.1533  1.0
            P  4
              1   18.1557  0.018534
              2    3.9864  0.115442
              3    1.1429  0.386206
              4    0.3594  0.640089
            P  1
              1    0.1146  1.0
 
          HYDROGEN  1.0   0.0000000000   0.0000000000   1.0922959062
            DH  0  1.2 1.2
 
          HYDROGEN  1.0   0.0000000000   0.4152229538  -1.4824967459
            DH  0  1.2 1.2
 
           $END
          --- these are 2-A1 ROHF vectors ---
          --- ROHF ORBITALS --- GENERATED AT 08:23:42 27 JUN 90 (178)
          E(ROHF)= -39.2316245004, E(NUC)= 8.0760320442, 12 ITERS
           $VEC
           1  1 6.01223299E-01...
 

 
 
          ! EXAM22.
          !
          !   3-A-2 H3CN   UMP2/6-31G*//UHF/6-31G*
          !
          !   The FINAL UHF energy= -94.0039683676 after 13 iters.
          !   The E(MP2) energy= -94.2315757758
          !
           $CONTRL SCFTYP=UHF MULT=3 RUNTYP=ENERGY MPLEVL=2
                   COORD=ZMT $END
           $SYSTEM TIMLIM=30 MEMORY=300000 $END
           $BASIS  GBASIS=N31 NGAUSS=6 NDFUNC=1 NPFUNC=0 $END
           $GUESS  GUESS=HUCKEL $END
           $DATA
          Methylnitrene...UHF/6-31G* structure
          Cnv 3
 
          N
          C  1  rCN
          H  2  rCH  1  aHCN
          H  2  rCH  1  aHCN  3  120.0
          H  2  rCH  1  aHCN  3 -120.0
 
          rCN=1.4329216
          rCH=1.0876477
          aHCN=110.21928
           $END
 

 
 
          ! EXAM23.
          !   semiempirical calculation, using the MOPAC/GAMESS combo
          !   AM1 gets the geometry disasterously wrong!
          !
          !   initial geometry,            MNDO       AM1         PM3
          !   FINAL HEAT OF FORMATION   105.14088   96.45997   46.89387
          !   RMS gradient              0.1405472  0.1008587  0.0366232
          !   final geometry (# steps),      8         12          6
          !   FINAL HEAT OF FORMATION    46.45649   -1.81730   -2.79646
          !   RMS gradient              0.0000425  0.0000063  0.0000172
          !   r(SiH)                      1.42117    1.45811    1.52103
          !   a(HSiH)                     101.960    120.000     96.276
          !
           $CONTRL RUNTYP=OPTIMIZE COORD=ZMT ICHARG=-1 $END
           $SYSTEM TIMLIM=5 MEMORY=200000 $END
           $BASIS  GBASIS=PM3 $END
           $DATA
          Silyl anion...comparison of semiempirical models
          Cnv 3
 
          Si
          H  1  rSiH
          H  1  rSiH  2 aHSiH
          H  1  rSiH  2 aHSiH  3   aHSiH  -1
 
          rSiH=1.15
          aHSiH=110.0
           $END
 

 

          ! EXAM24.
          !  Self-consistent reaction field test, of water in water.
          !  Cavity radius is calculated from the 1.00 g/cm**3 density.
          !  FINAL energy is -74.9666740755 after 12 iterations
          !  Induced dipole= -0.03663, RMS gradient= 0.033467686
          !
           $contrl scftyp=rhf runtyp=gradient coord=zmt $end
           $system memory=300000 $end
           $basis  gbasis=sto ngauss=3 $end
           $guess  guess=huckel $end
           $scrf   radius=1.93 dielec=80.0 $end
           $data
          water in water, arbitrary geometry
          Cnv 2
          
          O
          H 1 rOH
          H 1 rOH 2 aHOH 
          
          rOH = 0.95
          aHOH = 104.5
           $end



          ! EXAM25.
          !   Illustration of coordinate systems for geometry searches.
          !   Arbitrary molecule, chosen to illustrate ring, methyl on
          !   ring, methine H10, imino in ring, methylene in ring.
          !
          !      H8 H9
          !        \|
          !      H7-C6  O1---O5   H13
          !          \ /       \ /
          !           C2       C4
          !          /  \     /  \
          !         H10    N3     H12
          !                |
          !                H11
          !                       
          !    The initial AM1 energy is -48.6594935
          !                   initial RMS  final E    final RMS  #steps
          !   Cartesians       0.0200113 -48.7022520  0.0000283    50
          !   dangling Z-mat   0.0600637 ... OO bond crashes on 1st step
          !   good Z-matrix    0.0232915 -48.7022508  0.0000299    20
          !   nat. internals   0.0209855 -48.7022565  0.0000192    15
          !
           $contrl scftyp=rhf runtyp=optimize coord=zmt $end
           $system memory=300000 $end
           $statpt hess=guess nstep=100 nprt=-1 npun=-2 $end
           $basis  gbasis=am1 $end
           $guess  guess=huckel $end
           $data
          Illustration of coordinate systems
          C1
          O
          C 1 rCOa
          N 2 rCNa 1 aNCO
          C 3 rCNb 2 aCNC  1 wCNCO
          O 4 rCOb 3 aOCN  2 wOCNC
          C 2 rCC  1 aCCO  5 wCCOO
          H 6 rCH1 2 aHCC1 1 wHCCO1
          H 6 rCH2 2 aHCC2 1 wHCCO2
          H 6 rCH3 2 aHCC3 1 wHCCO3
          H 2 rCHa 1 aHCOa 5 wHCOOa
          H 3 rNH  2 aHNC  1 wHNCO
          H 4 rCHb 5 aHCOb 1 wHCOOb
          H 4 rCHc 5 aHCOc 1 wHCOOc

          rCOa=1.43
          rCNa=1.47
          rCNb=1.47
          rCOb=1.43
          aNCO=106.0
          aCNC=104.0
          aOCN=106.0
          wCNCO=30.0
          wOCNC=-30.0
          rCC=1.54
          aCCO=110.0
          wCCOO=-150.0
          rCH1=1.09
          rCH2=1.09
          rCH3=1.09
          aHCC1=109.0
          aHCC2=109.0
          aHCC3=109.0
          wHCCO1=60.0
          wHCCO2=-60.0
          wHCCO3=180.0
          rCHa=1.09
          aHCOa=110.0
          wHCOOa=100.0
          rNH=1.01
          aHNC=110.0
          wHNCO=170.0
          rCHb=1.09
          rCHc=1.09
          aHCOb=110.0
          aHCOc=110.0
          wHCOOb=150.0
          wHCOOc=-100.0
           $end
          
          To use Cartesian coordinates:
          --- $contrl nzvar=0 $end
          
          To use conventional Z-matrix, with dangling O-O bond:
          --- $contrl nzvar=33 $end
          
          To use well chosen internals, with all ring bonds closed:
          --- $contrl nzvar=33 $end
          --- $zmat   izmat(1)=1,1,2,  1,2,3,  1,3,4,  1,4,5,  1,5,1,
               2,1,2,3,  2,5,4,3,  3,5,1,2,3,  3,1,5,4,3,
               1,6,2,  2,6,2,1,  3,6,2,1,5,  
               1,6,7,  1,6,8,  1,6,9,  2,7,6,2,  2,8,6,2,  2,9,6,2,  
               3,7,6,2,1,  3,8,6,2,1,  3,9,6,2,1,
               1,10,2,  2,10,2,1,  3,10,2,1,5,
               1,11,3,  2,11,3,2,  3,11,3,2,1,
               1,12,4,  2,12,4,5,  3,12,4,5,1,  
               1,13,4,  2,13,4,5,  3,13,4,5,1 $end


          
          To use natural internal coordinates:
           $contrl nzvar=44 $end
           $zmat   izmat(1)=1,1,2,  1,2,3,  1,3,4,  1,4,5,  1,5,1,   ! ring !
               2,5,1,2,   2,1,2,3,   2,2,3,4,   2,3,4,5,   2,4,5,1,
               3,5,1,2,3, 3,1,2,3,4, 3,2,3,4,5, 3,3,4,5,1, 3,4,5,1,2,
                  1,2,6,  2,6,2,1,  2,6,2,3,  4,6,2,1,3,        ! methyl C !
               1,6,7,  1,6,8,  1,6,9,                           ! methyl Hs !
               2,7,6,8,  2,8,6,9,  2,9,6,7,  2,9,6,2,  2,7,6,2,  2,8,6,2,
               3,7,6,2,1,
                     1,10,2,  2,10,2,1,  2,10,2,3,  2,10,2,6,   ! methine !
                     1,11,3,  2,11,3,2,  2,11,3,4,  4,11,3,2,4, ! imino !
               1,12,4,  1,13,4,                                 ! methylene !
               2,12,4,13,  2,12,4,3,  2,13,4,3,  2,12,4,5,  2,13,4,5
          
                  ijS(1)=1,1,  2,2,  3,3,  4,4,  5,5,           ! ring !
                    6,6, 7,6, 8,6, 9,6,10,6,
                         7,7, 8,7, 9,7,10,7,
                   11,8,12,8,13,8,14,8,15,8,
                   11,7,12,9,     14,9,15,9,
                         16,10,   17,11,18,11,   19,12,         ! methyl C !
                   20,13,  21,14,  22,15,                       ! methyl Hs !
                   23,16, 24,16, 25,16, 26,16, 27,16, 28,16,
                   23,17, 24,17, 25,17,
                          24,18, 25,18,
                                        26,19, 27,19, 28,19,
                                               27,20, 28,20,
                   29,21,
                      30,22,    31,23,32,23,33,23,   32,24,33,24,  ! methine !
                      34,25,  35,26,36,26,  37,27,              ! imino !
                   38,28,  39,29,                               ! methylene !
                   40,30, 41,30, 42,30, 43,30, 44,30,
                          41,31, 42,31, 43,31, 44,31,
                          41,32, 42,32, 43,32, 44,32,
                          41,33, 42,33, 43,33, 44,33
          
                  Sij(1)=1.0, 1.0, 1.0, 1.0, 1.0,               ! ring !
                      1.0, -0.8090, 0.3090,  0.3090, -0.8090,
                           -1.1180, 1.8090, -1.8090, 1.1180,
                      0.3090, -0.8090, 1.0, -0.8090, 0.3090,
                      -1.8090, 1.1180,      -1.1180, 1.8090,
                              1.0,   1.0,-1.0,   1.0,           ! methyl C !
                   1.0,   1.0,   1.0,                           ! methyl Hs !
                   1.0, 1.0, 1.0,-1.0,-1.0,-1.0,
                   2.0,-1.0,-1.0,
                        1.0,-1.0,
                                  2.0,-1.0,-1.0,
                                       1.0,-1.0,
                   1.0,
                      1.0,     2.0,-1.0,-1.0,   1.0,-1.0,       ! methine !
                      1.0,   1.0,-1.0,    1.0,                  ! imino !
                   1.0,  1.0,                                   ! methylene !
                   4.0, 1.0, 1.0, 1.0, 1.0,
                        1.0,-1.0, 1.0,-1.0,
                        1.0, 1.0,-1.0,-1.0,
                        1.0,-1.0,-1.0, 1.0    $end