
The SPEC OMP2001 Benchmark on the Fujitsu
PRIMEPOWER System

Hidetoshi Iwashita, Eiji Yamanaka, and Naoki Sueyasu
Strategic Planning Division, Software Group

Fujitsu Ltd.
140 Miyamoto

Numazu-shi, Shizuoka 410-0396, Japan

Matthijs van Waveren
Fujitsu European Centre for Information Technology Ltd.

Hayes Park Central, Hayes End Road
Hayes UB4 8FE, UK

Kenichi Miura
Computer Systems Group

Fujitsu Ltd.
4-1-1 Kamikodanaka, Nakahara-ku,

Kawasaki-shi, Kanagawa 211-8588, Japan

Abstract

The SPEC OMP2001 benchmark suite has recently become available. This suite can be
used as a yardstick for measuring and comparing shared-memory systems, which support
the OpenMP API. We describe the separate benchmark components in the benchmark suite.
We present the results of this benchmark suite on the PRIMEPOWER 2000 system, as
officially submitted to SPEC in June 2001. We have run the benchmark on this flat SMP
System with up to 128 processors. We analyze the benchmark results. We give some
recommendations for an OpenMP programming style.

1. Introduction

The OpenMP Application Programming
Interface has emerged as a de-facto standard for
expressing shared-memory parallel programs. The
EPCC microbenchmark suite [1,2] measures
overheads due to synchronization and loop
scheduling. However, no adequate yardstick exists
for a comprehensive measurement and comparison of
shared-memory platforms, which support this API.
With the recent release of the SPEC OMP2001
benchmark suite, such a yardstick has become
available. Aslot et al [3] have presented the
benchmark suite, and have described issues in
creating the OpenMP benchmarks.

The suite measures multiprocessor systems
performance using code derived from actual
applications and with parallel processing capabilities
based on the OpenMP standard for shared-memory
parallel processing. The suite is targeted at system
vendors, software vendors, and customers of high-

performance computing systems. It includes a wide
range of application benchmarks covering disciplines
from computational chemistry to finite element crash
simulation and shallow water modeling. The input
data sets use up to 1.6 GB of virtual memory and the
runs take approximately four hours to run on a 200
MHz single-processor reference machine.

We have executed the components of the SPEC
OMP2001 benchmark on the Fujitsu
PRIMEPOWER 2000 system [4] with the
Parallelnavi software package. The benchmark was
run on this flat SMP system with up to 128
processors. The Parallelnavi software is a
development and job execution environment for
parallel programs on the PRIMEPOWER. It is based
on software technologies for Fujitsu’s VPP series of
distributed-memory parallel vector computers [5, 6].

The benchmarks in the SPEC OMP2001
benchmark suite are described in section 2, the
PRIMEPOWER system is described in section 3, and
the Parallenavi software package is described in

section 4. The benchmark results are discussed from
different points of view in section 5.

2. SPEC OMP2001 Benchmarks

The SPEC OMP20011 benchmark suite consists
of 11 large application programs, which represent the
type of software used in scientific technical
computing. The applications include modeling and
simulation programs from the fields of chemistry,
mechanical engineering, climate modeling, and
physics. Of the 11 application programs, 8 are written
in Fortran, and 3 are written in C.

The computational fluid dynamics applications
are APPLU, APSI, GALGEL, MGRID, and SWIM.
APPLU solves 5 coupled non-linear PDEs on a 3-
dimensional logically structured grid, using the
Symmetric Successive Over-Relaxation implicit
time-marching scheme [7]. Its Fortran source code is
4000 lines long. APSI is a lake environmental model,
which predicts the concentration of pollutants. It
solves the model for the mesoscale and synoptic
variations of potential temperature, wind
components, and for the mesoscale vertical velocity,
pressure, and distribution of pollutants. Its Fortran
source code is 7500 lines long. GALGEL performs a
numerical analysis of oscillating instability of
convection in low-Prandtl-number fluids [8]. Its
Fortran source code is 15300 lines long. MGRID is a
simple multigrid solver, which computes a 3-
dimensional potential field. Its Fortran source code is
500 lines long. SWIM is a weather prediction model,
which solves the shallow water equations using a
finite difference method. Its Fortran source code is
400 lines long.

AMMP (Another Molecular Modelling
Program) is a molecular mechanics, dynamics, and
modelling program. The benchmark performs a
molecular dynamics simulation of a protein-inhibitor
complex, which is embedded in water. Its C source
code is 13500 lines long.

FMA3D is a crash simulation program. It
simulates the inelastic, transient dynamic response of
3-dimensional solids and structures subjected to
impulsively or suddenly applied loads. It uses an
explicit finite element method [9]. Its Fortran source
code is 60000 lines long.

ART (Adaptive Resonance Theory) is a neural
network, which is used to recognize objects in a
thermal image [10]. The objects in the benchmark are
a helicopter and an airplane. Its C source code is
1300 lines long.

1 SPEC OMP2001 [tm] is a trademark of the

Standard Performance Evaluation Corp.

GAFORT computes the global maximum
fitness using a genetic algorithm. It starts with an
initial population and then generates children who go
through crossover, jump mutation, and creep
mutation with certain probabilities. Its Fortran source
code is 1500 lines long.

EQUAKE is an earthquake modelling program.
It simulates the propagation of elastic seismic waves
in large, heterogeneous valleys in order to recover the
time history of the ground motion everywhere in the
valley due to a specific seismic event. It uses a finite
element method on an unstructured mesh [11]. Its C
source code is 1500 lines long.

WUPWISE (Wuppertal Wilson Fermion
Solver) is a program in the field of lattice gauge
theory. Lattice gauge theory is a discretization of
quantum chromodynamics. Quark propagators are
computed within a chromodynamic background field.
The inhomogeneous lattice-Dirac equation is solved.
Its Fortran source code is 2200 lines long.

3. PRIMEPOWER 2000 System

The Fujitsu PRIMEPOWER 2000 [4] is a
parallel computation server supporting up to 128
CPUs and 512 gigabytes of memory. The CPU used
is SPARC64GP (563MHz), which conforms to the
SPARC International V9 architecture and loads the
Solaris 8 operating system. Figure 1 shows the
maximum configuration of the system. Each cabinet
(node) has 8 system boards and each system board
has four CPUs, 16 gigabytes of memory, six PCI
cards and a first level (L1) crossbar switch. All
system boards, within and between nodes, are
connected with the second level (L2) crossbar switch.

A distinguishing feature of PRIMEPOWER
2000 is its behavior as a flat Symmetric Multi-
processing (SMP) server. Two-layered crossbar
networks allow every CPU to access all memory in
the system and guarantee coherency.

PRIMEPOWER 2000

Cabinet
(node)
max.32

CPU

Cabinet
(node)
max.32

CPU

Cabinet
(node)
max.32

CPU

Cabinet
(node)
max.32

CPU

Figure 1: PRIMEPOWER 2000 System

4. Features of Parallelnavi OpenMP

Parallelnavi is a software package for the
PRIMEPOWER series server, and includes Fortran
and C/C++ compilers, support tools, mathematical
libraries, a message passing library (MPI), and a
multifunctional job management environment.
Parallelnavi Fortran V1.0.2 supports the OpenMP
Fortran API Version 1.1 [12] and will support the
latest version 2.0 [13]. Parallelnavi C/C++ V1.0.2
supports the OpenMP C/C++ API Version 1.0 [14].

The following parts of this section describe the
main features of the Parallelnavi OpenMP language
processor.

4.1 Static DO-loop Parallelization

The OpenMP Fortran API specifies two types
of DO-loop parallelism: static and dynamic
scheduling. Dynamic scheduling requires the system
to decide the correspondence of loop indices and
threads at runtime. In static scheduling on the other
hand, the correspondence can be fixed as a function
of the loop parameters and the number of threads at
compile time, and does not depend on the runtime
status. In our implementation, the loop parameters are
represented as expressions for the static scheduling
and as library calls for the dynamic scheduling. The
difference in cost is clearly shown in Figure 2. Since
the cost of static scheduling is small, the cost of DO

is mostly BARRIER, which is performed at the exit
point of DO block.

1

10

100

1000

10000

1 10 100

Chunksize

O
ve

rh
ea

d
[m

ic
ro

se
co

nd
s

STATIC,n
DYNAMIC,n
GUIDED,n
STATIC

Figure 2: EPCC OpenMP Microbenchmarks
Scheduling overheads

Parallelnavi Fortran V1.0. 2 on 8 CPU’s

4.2 Software Barrier Synchronization

We have implemented barrier synchronization
among threads by using load and store primitives
with ceil(log2 N) stages, where N is the number of
threads. This method employs N log2 N barrier flags.
Figure 3 illustrates the communication pattern for an
example of 4 threads. The barrier flags are indicated
as 0 through 7. The first thread, for instance, sets flag
0 on at first, waits for flag 3 to be on, then sets flag 4
on, and waits for flag 6 to be on.

This barrier synchronization is well load-
balanced and does not require exclusive execution
such as locks and critical sections.

0

4

‚

1 2

0 2

3

3

765

4 5 6 7

st

st

ld

ld

Figure 3: Illustration of software barrier

0

10000

20000

30000

0 20 40 60
Number of CPU’s

R
at

io

WUPWISE

0

10000

20000

30000

40000

50000

0 50 100 150

SWIM

0

10000

20000

30000

40000

50000

0 50 100 150

MGRID

0

10000

20000

30000

40000

50000

0 50 100 150

APPLU

0

10000

20000

30000

40000

50000

0 50 100 150

GALGEL

0

10000

20000

30000

40000

50000

0 50 100 150

EQUAKE

0

10000

20000

30000

40000

50000

0 50 100 150

APSI

0

10000

20000

30000

40000

50000

0 50 100 150

GAFORT

0

10000

20000

30000

40000

50000

0 50 100 150

FMA3D

0

10000

20000

30000

40000

50000

0 50 100 150

ART

0

10000

20000

30000

40000

50000

0 50 100 150

AMMP

0

10000

20000

30000

40000

50000

0 50 100 150

Figure 4: Result of SPEC OMP2001
Parallelnavi Fortran and C/C++ V1.0.2 on PRIMEPOWER 2000 (563MHz)

Cache conflicts are minimized by distributing
the barrier flags in a suitable manner.

4.3 Support of Nested Parallelism

The OpenMP Fortran API specifies nested
parallelism, in which a thread executing in a parallel
region together with other (sister) threads can
generate additional (child) threads in a number
limited by the runtime environment. Parallelnavi
OpenMP supports nested parallelism.

This support, however, enlarges the runtime
system and thus affects the performance of other
OpenMP applications, which do not use the nested
parallelism. So we will prepare another runtime
system, that concentrates on non-nested parallel
regions and is used only when the job clearly is
executed with non-nested parallel regions.

5. Experience on SPEC OMP2001

This section discusses the result of the SPEC
OMP2001 Medium data set with the Parallelnavi
OpenMP Fortran and C/C++ compilers.

Figure 4 shows the result of all SPEC
OMP2001 benchmarks (Medium size) up to 128
CPU’s. The numbers listed include all Fujitsu base
metric results published by SPEC between 27 June
2001 and 27 July 2001. For the latest results
published by SPEC, see
http://www.spec.org/hpg/omp2001/. All results
conform to Base Metrics rule, meaning that the
benchmark codes were not modified.

5.1 Fine Scalability -- WUPWISE, SWIM,
APPLU, and GAFORT

SWIM and APPLU have simple parallel regions
with work-sharing directives. WUPWISE uses
parallel versions of the LAPACK routines. GAFORT
underwent a quite major transformation during
parallelization [3].

These four benchmarks show good scalability
up to 128 CPU’s as shown in Figure 4. This is as
expected for SWIM, APPLU, and WUPWISE. The
result for GAFORT shows that the extensive
parallelization work of [3] has been quite successful.
While the Medium data set of SPEC OMP2001 is
specified for SMP systems of about 10 CPU’s, we

verified the scalability of the SMP system
PRIMEPOWER up to 128 CPU’s.

5.2 Automatic Arrays on Stack -- APSI

In APSI, large arrays are allocated frequently at
the top of subroutines in the dynamic extent of the
parallel region. Such allocation performed in parallel
often causes partial serialization and lock conflict. To
avoid such conflicts, the arrays should be managed
locally to each thread without interruption among
threads. Our compiler succeeded in allocating such
automatic arrays onto the local stack of each thread at
the entrance of subroutines, using the
-Nautoobjstack compiler option. The
effectiveness of the option can be shown in Figure 5.
The result is that APSI also shows quite scalable
behavior, as shown in Figure 4.

0

5000

10000

15000

0 10 20 30 40

Number of CPU’s

R
at

io no option

-Nautoobjstack

Figure 5: Optimization of memory allocation on
APSI

5.3 Inefficient PARALLEL DO -- GALGEL

GALGEL is one of the hardest benchmark in
the suite to get high performance. It includes about 90
PARALLEL DO blocks and all of them enclose only
a few assignment statements without nested-DO
loops, as shown in Figure 6 for instance. This kind of
PARALLEL DO block cannot be executed effectively
because the cost of thread fork/join is relatively high
compared to the parallel computation inside the
block. Therefore, a naive implementation could cause
even lower performance than the serial execution.

A typical PARALLEL DO block:
--
!$OMP PARALLEL DO
 DO i = 1,NUMNE
 NNPSETS(i) = 0
 ENDDO
--

One of the largest PARALLEL DO block:
--
!$OMP PARALLEL DO PRIVATE(SUM)
 DO 140 J = 1, N
 SUM = V1*C(1, J) + V2*C(2, J) +
 $ V3*C(3, J) +
 $ V4*C(4, J) + V5*C(5, J) +
 $ V6*C(6, J) +
 $ V7*C(7, J)
 C(1, J) = C(1, J) - SUM*T1
 C(2, J) = C(2, J) - SUM*T2
 C(3, J) = C(3, J) - SUM*T3
 C(4, J) = C(4, J) - SUM*T4
 C(5, J) = C(5, J) - SUM*T5
 C(6, J) = C(6, J) - SUM*T6
 C(7, J) = C(7, J) - SUM*T7
 140 CONTINUE
--

Figure 6: Examples of PARALLEL DO directives
in GALGEL

To avoid such a situation, the compiler selects a
serial version of the execution code for the
PARALLEL DO block statically or dynamically,
instead of the faithful implementation of the
PARALLEL DO directive. When the serial execution
is selected at the compile time or runtime, the
performance of the PARALLEL DO block will be
guaranteed to be at least as high performance as the
serial execution. According to our experience, the
performance goes slightly up as a function of the
number of CPU’s from 4349 for 18 CPU’s up to
5149 for 66 CPU’s and then down to 4740 for 128
CPU’s.

5.4 Loop Interchange -- EQUAKE

Similar to GALGEL, the key of the
performance in EQUAKE (written in OpenMP C)
was a PARALLEL FOR directive which contains
trivial computation as shown in Figure 7. In this case,
however, the loop interchange technique worked well
in the compiler, which hoists the thread fork/join
overhead out of the outer loop. So good scalability
continued up to 128 CPU’s.

 for (j = 0; j < numthreads; j++) {
 #pragma omp parallel for private(i)
 for (i = 0; i < nodes; i++) {
 w2[j][i] = 0;
 }
 }

Figure 7: Critical PARALLEL FOR block in
EQUAKE

5.5 General discussions

We met performance problems related to the
memory allocation for all the SPEC OMP2001
benchmarks. Not only explicit allocatable and
automatic arrays, but also array expressions and array
assignment statements of Fortran90 cause dynamic
allocation generated by the compiler. For high
performance, all of these allocations must be reduced
and handled in parallel with the least number of
conflicts between the threads. Even if the malloc
system call is called thread-safe, it often causes
exclusive execution or severe cache conflict. As
mentioned in the example of APSI, avoiding memory
allocation gives the best results.

As shown in GALGEL and EQUAKE, the
OpenMP program sometimes contains many
PARALLEL DO/FOR directive blocks enclosing a
small amount of computation. We would like to
recommend a programming style in which many
DO/FOR directive blocks are enclosed in a large
PARALLEL directive block. Thus the number of
thread fork/join can be reduced as much as possible.
However it might be difficult to get this programming
style accepted by developers, since the former style is
easier to use.

6. Conclusion

We evaluated the Medium size SPEC
OMP2001 benchmark with the Parallelnavi Fortran
and C/C++ compilers on the SMP server Fujitsu
PRIMEPOWER2000. Without modification of
benchmark codes (Base Metrics rule), the compilers
have extracted high and scalable performance for
most benchmark codes in SPEC OMP2001.

 We can conclude that the PRIMEPOWER 2000
is a suitable platform for the implementation of
OpenMP. With respect to the flat SMP hardware, it is
shown that the execution performance increases
smoothly with the number of CPU’s without bending
at any special numbers.

References

[1] EPCC Microbenchmarks.
http://www.epcc.ed.ac.uk/research/openmpbench/

[2] J.M. Bull. Measuring Synchronisation and
Scheduling Overheads in OpenMP. In Proc. Of
EWOMP99, First European Workshop on
OpenMP.
(http://www.epcc.ed.ac.uk/research/openmpbenc
h/ewomp.pdf)

[3] V. Aslot, M. Domeika, R. Eigenmann, G.
Gaertner, W.B. Jones, and B. Parady. SPEComp:
A New Benchmark Suite for Measuring Parallel
Computer Performance. In Proc. Of
WOMPAT2001, Workshop on OpenMP
Applications and Tools, Lecture Notes in
Computer Science, 2104, pages 1-10, July 2001.
(http://www.ece.purdue.edu/~eigenman/reports/w
ompat01spec.pdf)

[4] N. Izuta, T. Watabe, T. Shimizu, and T. Ichihashi.
Overview of PRIMEPOWER 2000/1000/800
Hardware. Fujitsu Sci. Tech. J. 36(2):121-127,
2000. (http://magazine.fujitsu.com/us/vol36-
2/paper03.pdf).

[5] H. Iwashita, S. Okada, M. Nakanishi, T. Shindo,
and H. Nagakura. VPP Fortran and Parallel
Programming on the VPP500 Supercomputer. In
Proceedings of the 1994 International
Symposium on Parallel Architectures, Algorithms
and Networks (poster session papers), pages 165-
172, Kanazawa, Japan, December 1994.

[6] H. Iwashita, N. Sueyasu, S. Kamiya, and M. van
Waveren. VPP Fortran and the Design of HPF/JA
Extensions, Concurrency: Practice and
Experience. To be published.

[7] E. Barszcz, R. Fatoohi, V. Venkatkrishnan and S.
Weeratunga. Solution of Regular Sparse
Triangular Systems on Vector and Distributed-
Memory Multiprocessors. Rept. No: RNR-93-
007, NASA Ames Research Center, 1993

[8] Gelfgat A.Yu., Bar-Yoseph P.Z. and Solan A.
Stability of confined swirling flow with and
without vortex breakdown. Journal of Fluid
Mechanics, vol. 311, pp.1-36, 1996.

[9] Key, S. W. and C. C. Hoff. An Improved
Constant Membrane and Bending Stress Shell
Element for Explicit Transient Dynamics.
Computer Methods in Applied Mechanics and
Engineering, Vol. 124, pp 33-47, 1995.

[10] M.J. Domeika, C.W. Roberson, E.W. Page,
and G.A. Tagliarini, Adaptive Resonance Theory
2 Neural Network Approach To Star Field
Recognition, in Applications and Science of
Artificial Neural Networks II, Steven K. Rogers,

Dennis W. Ruck, Editors, Proc. SPIE 2760, pp.
589-596(1996).

[11] Hesheng Bao, Jacobo Bielak, Omar
Ghattas, Loukas F. Kallivokas, David R.
O’Hallaron, Jonathan R. Shewchuk, and Jifeng
Xu, Large-scale Simulation of Elastic Wave
Propagation in Heterogeneous Media on Parallel
Computers. Computer Methods in Applied
Mechanics and Engineering 152(1-2):85-102, 22
January 1998.

[12] OpenMP Architecture Review Board.
OpenMP Fortran Application Program Interface
Version 1.1, November 1999.
(http://www.openmp.org/specs/mp-
documents/fspec11.pdf)

[13] OpenMP Architecture Review Board.
OpenMP Fortran Application Program Interface
Version 2.0, November 2000.
(http://www.openmp.org/specs/mp-
documents/fspec20.pdf)

[14] OpenMP Architecture Review Board.
OpenMP C/C++ Application Program Interface
Version 1.0, October 1998.
(http://www.openmp.org/specs/mp-
documents/cspec10.pdf)

