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Abstract.   Performance characteristics of application programs on large-scale systems
are often significantly different from those on smaller systems. SPEC OMP2001 is a
benchmark suite intended for measuring performance of modern shared memory
parallel systems. The first component of the suite, SPEC OMPM2001, is developed for
medium-scale (4- to 16-way) systems. We present our experiences on benchmark
development in achieving good scalability using the OpenMP API.  This paper then
analyzes the published results of SPEC OMPM2001 on large systems (32-way and
larger), based on application program behavior and systems’ architectural features. The
ongoing development of the SPEC OMP2001 benchmark suites is also discussed. Its
main feature is the increased data set for large-scale systems. We refer to this suite as
SPEC OMPL2001, in contrast to the current SPEC OMPM2001 (medium data set)
suite.
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1 Introduction

SPEC (The Standard Performance Evaluation Corporation) is an organization for
creating industry-standard benchmarks to measure various aspects of modern
computer system performance. SPEC’s High-Performance Group (SPEC HPG) is a
workgroup aiming at benchmarking high-performance computer systems. In June of
2001, SPEC HPG released the first of the SPEC OMP2001 benchmark suites, SPEC
OMPM2001.  This suite consists of a set of OpenMP-based application programs.
The data sets of the SPEC OMPM2001 suite (also referred to as the medium suite) are
derived from state-of-the-art computation on modern medium-scale (4- to 16-way)
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shared memory parallel systems.  Aslot et al. [1] have presented the benchmark suite.
Aslot et al. [2] and Iwashita et al. [3] have described performance characteristics of
the benchmark suite.

As of this writing, a large suite (SPEC OMPL2001), focusing on 32-way and
larger systems, is under development. SPEC OMPL2001 shares most of the
application code base with SPEC OMPM2001. However, the code and the data sets
are modified to achieve better scaling and also to reflect the class of computation
regularly performed on such large systems.

Performance characteristics of application programs on large-scale systems are
often significantly different from those on smaller systems. In this paper, we
characterize the performance behavior of large-scale systems (32-way and larger)
using the SPEC OMPM2001 benchmark suite. In Section 2, we present our
experiences on benchmark development in achieving good scalability using the
OpenMP API. Section 3 analyzes the published results of SPEC OMPM2001 on large
systems, based on application program behavior and systems’ architectural features.
The development of SPEC OMPL2001 is discussed in Section 4, and Section 5
concludes the paper.

2 Experiences on SPEC OMPM2001 Benchmark Development

2.1 Overview of the SPEC OMP2001 Benchmark

The SPEC OMPM2001 benchmark suite consists of 11 large application
programs, which represent the type of software used in scientific technical computing.
The applications include modeling and simulation programs from the fields of
chemistry, mechanical engineering, climate modeling, and physics. Of the 11
application programs, 8 are written in Fortran, and 3 are written in C. The benchmarks
require a virtual address space of about 1.5 GB in a 1-processor execution. The
rationales for this size were to provide data sets significantly larger than those of the
SPEC CPU2000 benchmarks, while still fitting them in a 32-bit address space.

The computational fluid dynamics applications are APPLU, APSI, GALGEL,
MGRID, and SWIM. APPLU solves 5 coupled non-linear PDEs on a 3-dimensional
logically structured grid, using the Symmetric Successive Over-Relaxation implicit
time-marching scheme [4]. Its Fortran source code is 4000 lines long. APSI is a lake
environmental model, which predicts the concentration of pollutants. It solves the
model for the mesoscale and synoptic variations of potential temperature, wind
components, and for the mesoscale vertical velocity, pressure, and distribution of
pollutants. Its Fortran source code is 7500 lines long. GALGEL performs a numerical
analysis of oscillating instability of convection in low-Prandtl-number fluids [5]. Its
Fortran source code is 15300 lines long. MGRID is a simple multigrid solver, which
computes a 3-dimensional potential field. Its Fortran source code is 500 lines long.



SWIM is a weather prediction model, which solves the shallow water equations using
a finite difference method. Its Fortran source code is 400 lines long.

AMMP (Another Molecular Modeling Program) is a molecular mechanics,
dynamics, and modeling program. The benchmark performs a molecular dynamics
simulation of a protein-inhibitor complex, which is embedded in water. Its C source
code is 13500 lines long.

FMA3D is a crash simulation program. It simulates the inelastic, transient
dynamic response of 3-dimensional solids and structures subjected to impulsively or
suddenly applied loads. It uses an explicit finite element method [6]. Its Fortran
source code is 60000 lines long.

ART (Adaptive Resonance Theory) is a neural network, which is used to
recognize objects in a thermal image [7]. The objects in the benchmark are a
helicopter and an airplane. Its C source code is 1300 lines long.

GAFORT computes the global maximum fitness using a genetic algorithm. It
starts with an initial population and then generates children who go through crossover,
jump mutation, and creep mutation with certain probabilities. Its Fortran source code
is 1500 lines long.

EQUAKE is an earthquake-modeling program. It simulates the propagation of
elastic seismic waves in large, heterogeneous valleys in order to recover the time
history of the ground motion everywhere in the valley due to a specific seismic event.
It uses a finite element method on an unstructured mesh [8]. Its C source code is 1500
lines long.

WUPWISE (Wuppertal Wilson Fermion Solver) is a program in the field of
lattice gauge theory.  Lattice gauge theory is a discretization of quantum
chromodynamics. Quark propagators are computed within a chromodynamic
background field. The inhomogeneous lattice-Dirac equation is solved. Its Fortran
source code is 2200 lines long.

2.2 Parallelization of the Application Programs

Most of the application programs in the SPEC OMPM2001 benchmark suite are
taken from the SPEC CPU2000 suites. Therefore, parallelization of the original
sequential program was one of the major efforts in the benchmark development. The
techniques we have applied in parallelizing the programs are described in [1]. We
give a brief overview of these techniques and then focus on an issue of particular
interest, which is performance tuning of the benchmarks on non-uniform memory
access (NUMA) machines.

The task of parallelizing the original, serial benchmark programs was relatively
straightforward. The majority of code sections were transformed into parallel form by



searching for loops with fully independent iterations and then annotating these loops
with OMP PARALLEL DO directives. In doing so, we had to identify scalar and
array data structures that could be declared as private to the loops or that are involved
in reduction operations. Scalar and array privatization is adequately supported by
OpenMP.  When part of an array had to be privatized, we created local arrays for that
purpose. Parallel array reduction is not supported by the OpenMP Fortran 1.1
specification [9], and thus these array operations have been manually transformed. As
we studied performance and scalability of the parallelized code, we realized that
LAPACK routines and array initialization should also be parallel. Note that parallel
array reduction is supported by the OpenMP Fortran 2.0 specification [10].

In several situations we exploited knowledge of the application programs and the
underlying problems in order to gain adequate performance. For example, linked lists
were converted to vector lists (change of data structures). In GAFORT, a parallel
shuffle algorithm we decided to use is different from the original sequential one
(change of algorithms). In EQUAKE, the global sum was transformed to a sparse
global sum by introducing a mask. Classical wisdom of parallelizing at a coarser grain
also played a role. We have fused small loops, added NOWAIT at the end of
applicable work-sharing loops, and even restructured big loops so that multiple
instances of the loop can run in parallel.  When memory could be traded for a good
speedup, we allowed a substantial increase in memory usage.

Our parallelization effort resulted in good theoretical and actual scaling for our
target platforms [1]. In all but one code, over 99% of the serial program execution is
enclosed by parallel constructs. In GALGEL the parallel coverage is 95%. Figure 1
shows the speedups computed from Amdahl’s formula.

0
2
4
6
8

10
12
14
16

0 5 10 15 20

Number of Threads

S
pe

ed
up

GALGEL

all others

Figure 1: Amdahl’s Speedup for 4, 8, and 16 threads.



2.3 Parallelization of the SWIM Application Program with Initialization for
NUMA Architectures

SWIM represents one of the more simple benchmarks in the SPEC OMPM2001 suite
and makes an easy example of the techniques used to parallelize the applications in
the SPEC OMPM2001 suite using the OpenMP Standard.  It also exemplifies the use
of the parallelization of the initialization of arrays and memory to get good, scalable
performance on a number of cache-coherent non-uniform memory access (NUMA)
architectures.

Swim has 3 subroutines that contain more than 93% of the work as measured at
runtime using a performance analysis tool.  Each of these subroutines contained
loops, one of which contained most of the work of that subroutine.  These are two-
dimensional loops, indexed as U(I,J).  So, in the initial parallelization of SWIM, these
three loops were parallelized over the J-index to reduce false sharing of cache lines
and provide enough work in the contiguous I-direction.  The application scaled well
to 8 CPUs.

Beyond eight CPUs, a number of problems occurred. We will discuss the 32 CPU
case.  One of the remaining, serial routines took about 6% of the time on one CPU.
By Amdahl’s law, this routine would consume over 60% of the execution time on 32
CPUs. A performance analysis tool running on all 32 CPUs with the application
indicated that most of this time was spent in one loop. We were able to parallelize this
loop over the J index with the help of an OpenMP reduction clause.

At this point the application ran reasonably well on 32 CPUs.  But, considering
that nearly all of the work had been parallelized, a comparison of the 8-CPU time
with the 32-CPU time indicated that the application was not scaling as well as
expected.  To check how sensitive the application was to NUMA issues, we ran 2
experiments on the SGI Origin3000.  In the first, we used the default “first touch”
memory placement policy where virtual memory is placed on the physical memory
associated with the process that touched the memory first, usually via a load or store
operation.  In the second experiment we used a placement policy where the memory is
spread around the system in a round robin fashion on those physical memories with
processes that are associated with the job.  In the “first touch” case we found load
imbalance relative to the “round robin” case.  We also found that some parallelized
loops ran much slower with the “first touch” relative to “round robin” memory
placement, while others ran better with the “first touch” memory placement. A profile
of the parallel loops indicated that the arrays that were affected the most in going
from “first touch” to “round robin” were the UOLD, VOLD and POLD arrays.
Looking at the code, we found that most of the arrays had been initialized in parallel
loops along the J index in the same way that they were parallelized in the sections that
did most of the work.  The primary exceptions were the UOLD, VOLD and POLD
arrays, which were initialized in a serial section of the application.  After parallelizing
the loop that initialized these arrays, we found that the application scaled very well to
32 CPUs.



A final profile of the application indicated that a few small loops that enforce
periodic conditions in the spatial variation of the arrays may also be parallelized for
an additional improvement in performance on 32 CPUs. However this modification is
not part of the current OMPM2001 suite.

3 Large System Performance of SPEC OMPM2001 Benchmarks

Performance characteristics of application programs on large-scale systems are often
significantly different from those on smaller systems. Figure 2 shows a scaling of
Amdahl’s speedup for 32 to 128 threads, normalized by the Amdahl’s speedup of 16
threads. The graph now looks notably different from Figure 1.
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Figure 2: Normalized scaling of Amdahl’s Speedup for 16 to 128 threads.

Amdahl’s speedup assumes perfect scaling of the parallel portion of the program.
Actual programs and actual hardware have additional sources of overhead, which
degrade the performance obtained on a real system relative to the upper bound given
by Amdahl’s law. Figures 3-6 show the scaling data for published benchmark results
of SPEC OMPM2001.

3.1 Benchmarks with Good Scalability

The numbers listed in the following figures have been obtained from the results
published by SPEC as of December 23, 2001. For the latest results published by
SPEC, see http://www.spec.org/hpg/omp2001. All results shown conform to Base
Metrics rules, meaning that the benchmark codes were not modified. For better
presentation of the graph, we have normalized all results with the lowest published
result as of December 23, 2001 for each platform. The results for the Fujitsu
PRIMEPOWER 2000 563 MHz system have been divided by the Fujitsu



PRIMEPOWER 2000 18-processor result.  The results for the SGI Origin 3800 500
MHZ R14 K system have been divided by the SGI Origin 3800 8-processor result.
Finally, the results for the HP PA-8700 750 MHz system have been divided by the HP
PA-8700 16-processor result.

The benchmarks WUPWISE, SWIM, and APSI show good scalability up to 128
processors (Figure 3). The scalability of APSI has a dip between 64 and 100
processors, and this is under investigation.

Figure 3: OMPM2001 benchmarks that show good scalability. The X-axis shows
the number of processors. The Y-axis shows performance relative to the lowest
published result as of Dec. 23, 2001 for each platform.

3.2 Benchmarks with Superlinear Scaling

The benchmark APPLU shows superlinear scaling on HP PA-8700, on the
SGI Origin 3800, and on the Fujitsu PRIMEPOWER 2000 due to a more efficient
usage of the cache as more processors are used (Figure 4). HP’s PA-8700 processor
has 1.5MB primary data cache (and no secondary cache), and the R14000 in SGI’s
Origin 3800 has an 8MB off-chip unified secondary cache. The cache of the 8-
processor Origin 3800 system (64MB unified L2 cache) is insufficient to fit the
critical data, but the cache of the 16 processor system holds it. The cache of the 64
processor PA-8700 system (96MB L1 data cache) is large enough to hold the critical
data. Preliminary results on the Fujitsu PRIMEPOWER 2000 system, which also has
an 8MB off-chip secondary cache, show superlinear scaling when going from 8
processors with a 64MB L2 cache to 16 processors with a 128MB L2 cache, and to 22
processors with a 176MB L2 cache.
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Figure 4: OMPM2001 benchmark APPLU, which shows superlinear scalability.
The Y-axis shows the speedup relative to the lowest published result as of Dec. 23,
2001 for each platform.

3.3 Benchmarks with Good Scaling up to 64 Processors

The benchmarks EQUAKE, MGRID, and ART show good scaling up to 64
processors, but poor scaling for larger number of processors (Figure 5). This has been
shown on a Fujitsu PRIMEPOWER 2000 system, and the results are normalized by
the 18-processor result. MGRID and EQUAKE are sparse matrix calculations, which
do not scale well to large number of processors. We expect that the large data set of
the OMPL suite, described in the next section, will have better scaling behavior to a
large number of processors.

3.4 Benchmarks with Poor Scaling

The benchmarks GALGEL, FMA3D, and AMMP show poor scaling for all
number of processors beyond 8 or 16 CPUs (Figure 6). GALGEL uses the QR
algorithm, which has been known to be non-scalable.

4 SPEC OMPL2001 Benchmark Development

As of this writing, the development of a new OpenMP benchmark suite, also
referred to as SPEC OMPL2001, is underway.  In contrast to the SPEC OMPM2001
suite, the target problem size (working set size and run time) is approximately 4x to
8x larger than SPEC OMPM2001. The entire suite should take no more than two days



to complete on a 16-CPU 350MHz reference machine. On a reference system, we
expect the maximum working set size would be around 6GB, which will require a
support for a 64-bit address space2
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Figure 5: OMPM2001 benchmarks that show good scaling to 64 CPUs.  The X-
axis shows the number of processors. The Y-axis shows the speedup relative to the
18-CPU results as of Dec. 23, 2001.
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Figure 6: OMPM2001 benchmarks that show poor scaling. The X-axis shows the
number of processors. The Y-axis shows the speedup relative to the lowest published
results as of Dec. 23, 2001 for each platform.

There are still many unknowns in the final outcome of the SPEC OMPL2001
benchmark suite. We have set the following design goals for the new suite. SPEC
OMPL2001 will exercise more code paths than SPEC OMPM2001, necessitating
additional parallelization efforts. On some benchmark programs, I/O became a
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bottleneck in handling larger data sets. When I/O is an integral part of the application,
parallel I/O would be called for. Alternatively, output can be trimmed down. ASCII
input files are most portable and performance-neutral, but the overhead of converting
large ASCII input files to floating-point binary can impact the execution time
significantly. Furthermore, the C code will be made C++ friendly, so that C++
compilers can also be used for the benchmarks.

Figure 7 shows the scaling of the working set size and the execution time for a
32-processor system. For example, WUPWISE in SPEC OMPL2001 uses 3.5 times
more memory than SPEC OMPM2001, and it takes three times longer to execute.
This experiment is based on the latest SPEC OMPL2001 benchmark development kit,
and thus the code and the data set are subject to changes before the final release of the
benchmark.
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Figure 7 Working set and execution time scaling of
 a preliminary version of the SPEC OMPL suite

5 Conclusion

In this paper we have analyzed the performance characteristics of published
results of the SPEC OMPM2001 benchmark suite. We have found that many of the
benchmark programs scale well up to several tens of processors. We have also found
a number of codes with poor scalability. Furthermore, we have described the ongoing
effort by SPEC’s High-Performance Group to develop a new release of the OpenMP
benchmark suites, SPEC OMPL2001, featuring data sets up to 6GB in size.
SPEC/HPG is open to adopt new benchmark programs. A good candidate program
would represent a type of computation that is regularly performed on high-
performance computers.
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