The PGI C compiler for Linux.
The PGI C++ compiler for Linux.
The PGI Fortran 95 compiler for Linux.
Process Fortran source using free form specifications. By default files with a .f90, .F90, .f95 or .F95 extension use freeform formatting.
Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory parallel programming directives and generate an executable file which will utilize multiple processors in a shared-memory parallel system. When used strictly as a linker flag, the PGI OpenMP runtime will be linked and users can use the environment variables MP_BIND and MP_BLIST to bind a serial program to a CPU.
Chooses generally optimal flags for the target platform. As of the PGI 7.0 release, the flags "-fast" and "-fastsse" are equivalent for 64-bit compilations. For 32-bit compilations "-fast" does not include "-Mscalarsse", "-Mcache_align", or "-Mvect=sse".
Instructs the vectorizer to search for vectorizable loops and, where possible, make use of SIMD instructions.
Link with the huge page runtime library. The maximum number of huge pages the application can use is limited by the number of huge pages the operating system has available or the value of the environment variable PGI_HUGE_PAGES.
(For use only on 64-bit Linux targets) Generate code for the medium memory model in the linux86-64 execution environment. The default small memory model of the linux86-64 environment limits the combined area for a user's object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for system routines, shared libraries, stacks, etc. Programs are started at a fixed address, and the program can use a single instruction to make most memory references. The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units compiled using either -mcmodel=medium or -fpic require additional instructions to reference memory. The effect on performance is a function of the data-use of the application. The -mcmodel=medium switch must be used at both compile time and link time to create 64-bit executables. Program units compiled for the default small memory model can be linked into medium memory model executables as long as they are compiled -fpic, or position-independent.
Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory parallel programming directives and generate an executable file which will utilize multiple processors in a shared-memory parallel system. When used strictly as a linker flag, the PGI OpenMP runtime will be linked and users can use the environment variables MP_BIND and MP_BLIST to bind a serial program to a CPU.
Chooses generally optimal flags for the target platform. As of the PGI 7.0 release, the flags "-fast" and "-fastsse" are equivalent for 64-bit compilations. For 32-bit compilations "-fast" does not include "-Mscalarsse", "-Mcache_align", or "-Mvect=sse".
Instructs the vectorizer to search for vectorizable loops and, where possible, make use of SIMD instructions.
Link with the huge page runtime library. The maximum number of huge pages the application can use is limited by the number of huge pages the operating system has available or the value of the environment variable PGI_HUGE_PAGES.
(For use only on 64-bit Linux targets) Generate code for the medium memory model in the linux86-64 execution environment. The default small memory model of the linux86-64 environment limits the combined area for a user's object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for system routines, shared libraries, stacks, etc. Programs are started at a fixed address, and the program can use a single instruction to make most memory references. The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units compiled using either -mcmodel=medium or -fpic require additional instructions to reference memory. The effect on performance is a function of the data-use of the application. The -mcmodel=medium switch must be used at both compile time and link time to create 64-bit executables. Program units compiled for the default small memory model can be linked into medium memory model executables as long as they are compiled -fpic, or position-independent.
Use the -mp option to instruct the compiler to interpret user-inserted OpenMP shared-memory parallel programming directives and generate an executable file which will utilize multiple processors in a shared-memory parallel system. When used strictly as a linker flag, the PGI OpenMP runtime will be linked and users can use the environment variables MP_BIND and MP_BLIST to bind a serial program to a CPU.
Chooses generally optimal flags for the target platform. As of the PGI 7.0 release, the flags "-fast" and "-fastsse" are equivalent for 64-bit compilations. For 32-bit compilations "-fast" does not include "-Mscalarsse", "-Mcache_align", or "-Mvect=sse".
Instructs the vectorizer to search for vectorizable loops and, where possible, make use of SIMD instructions.
Link with the huge page runtime library. The maximum number of huge pages the application can use is limited by the number of huge pages the operating system has available or the value of the environment variable PGI_HUGE_PAGES.
(For use only on 64-bit Linux targets) Generate code for the medium memory model in the linux86-64 execution environment. The default small memory model of the linux86-64 environment limits the combined area for a user's object or executable to 1GB, with the Linux kernel managing usage of the second 1GB of address for system routines, shared libraries, stacks, etc. Programs are started at a fixed address, and the program can use a single instruction to make most memory references. The medium memory model allows for larger than 2GB data areas, or .bss sections. Program units compiled using either -mcmodel=medium or -fpic require additional instructions to reference memory. The effect on performance is a function of the data-use of the application. The -mcmodel=medium switch must be used at both compile time and link time to create 64-bit executables. Program units compiled for the default small memory model can be linked into medium memory model executables as long as they are compiled -fpic, or position-independent.
This section contains descriptions of flags that were included implicitly by other flags, but which do not have a permanent home at SPEC.
Level-two optimization (-O2 or -O) specifies global optimization. The -fast option generally will specify global optimization; however, the -fast switch will vary from release to release depending on a reasonable selection of switches for any one particular release. The -O or -O2 level performs all level-one local optimizations as well as global optimizations. Control flow analysis is applied and global registers are allocated for all functions and subroutines. Loop regions are given special consideration. This optimization level is a good choice when the program contains loops, the loops are short, and the structure of the code is regular.
The PGI compilers perform many different types of global optimizations, including but not limited to:
Level-one optimization specifies local optimization (-O1). The compiler performs scheduling of basic blocks as well as register allocation. This optimization level is a good choice when the code is very irregular; that is it contains many short statements containing IF statements and the program does not contain loops (DO or DO WHILE statements). For certain types of code, this optimization level may perform better than level-two (-O2) although this case rarely occurs.
The PGI compilers perform many different types of local optimizations, including but not limited to:
Instructs the compiler to completely unroll loops with a constant loop count of less than or equal to 1 where 1 is a supplied constant value. If no constant value is given, then a default of 4 is used. A value of 1 inhibits the complete unrolling of loops with constant loop counts.
Invokes the loop unroller.
Inline functions declared with the inline keyword.
Enable an optional post-pass instruction scheduling.
Enables loop-carried redundancy elimination, an optimization that can reduce the number of arithmetic operations and memory references in loops.
Eliminates operations that set up a true stack frame pointer for every function. With this option enabled, you cannot perform a traceback on the generated code and you cannot access local variables.
Instructs the vectorizer to search for vectorizable loops and, where possible, make use of SSE, SSE2, and prefetch instructions.
Enable automatic vector pipelining.
Instructs the vectorizer to enable certain associativity conversions that can change the results of a computations due to roundoff error. A typical optimization is to change an arithmetic operation to an arithmetic opteration that is mathmatically correct, but can be computationally different, due to round-off error.
Instructs the vectorizer to generate alternate code for vectorized loops when appropriate. For each vectorized loop the compiler decides whether to generate altcode and what type or types to generate, which may be any or all of:
The compiler also determines suitable loop count and array alignment conditions for executing the altcode.
Align "unconstrained" data objects of size greater than or equal to 16 bytes on cache-line boundaries. An "unconstrained" object is a variable or array that is not a member of an aggregate structure or common block, is not allocatable, and is not an automatic array. On by default on 64-bit Linux systems.
Set SSE to flush-to-zero mode; if a floating-point underflow occurs, the value is set to zero.
Treat denormalized numbers as zero. Included with "-fast" on Intel based systems. For AMD based systems, "-Mdaz" is not included by default with "-fast".
Use SSE/SSE2 instructions to perform scalar floating-point arithmetic on targets where these instructions are supported.
Enable support for 64-bit indexing and single static data objects larger than 2GB in size. This option is default in the presence of -mcmodel=medium. Can be used separately together with the default small memory model for certain 64-bit applications that manage their own memory space.
Flag description origin markings:
For questions about the meanings of these flags, please contact the tester.
For other inquiries, please contact webmaster@spec.org
Copyright 2012-2014 Standard Performance Evaluation Corporation
Tested with SPEC OMP2012 v21.
Report generated on Tue Jul 22 13:36:06 2014 by SPEC OMP2012 flags formatter v538.