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Abstract

Profile feedback Optimization (PFO) techniques are
used to improve the performance of compiler generated
code. Under PFO, the code is compiled twice. The first
compilation produces an instrumented version of the code.
This instrumented version is then run with a ‘representa-
tive’ workload to generate a profile. This profile is used as
an input into the second compilation of the code. One of
the problems associated with using profile feedback is de-
termining whether the workload used for training is appro-
priate.

In this paper we develop metrics to define whether or not
a workload is representative. Using these metrics, we eval-
uate whether the training workloads provided for the SPEC
CPU2000 benchmark suite are appropriate and illustrate
that, for several of the benchmarks, there are significant
problems.

This analysis was also used as part of the process
of defining the workloads used in the forthcoming SPEC
CPU2006 suite.

1 Introduction

When a program is compiled, the compiler usually has
to make best guesses at whether a particular branch in the
program is taken or untaken. Based on these guesses, the
compiler makes a variety of decisions about how to best
lay out the code, and whether particular routines should be
inlined [1].

If the compiler guesses correctly, there is the potential
for large performance gains. On the other hand, guessing
wrongly may lead to missed opportunities for performance
improvements.

To assist the compiler in making these decisions, there
is the profile feedback mechanism [2, 3]. The method is
to build an instrumented version of the binary. This binary

is run on one or more representative workloads, in order to
collect data on the frequency with which branches are taken
and routines are called. The compiler uses this information
to guide a second compilation, resulting in better decisions
for code layout and inlining.

Despite these potential improvements in performance, it
can be difficult to persuade developers to use profile feed-
back, and there are two common concerns:

1. Build time : using profile feedback requires two com-
piles of the application and one (or more) runs of rep-
resentative workloads. This may mean that the entire
build time for the application is more than doubled.

2. Representative workloads: the developer may be un-
sure of what constitutes a representative workload for
their application. They may also be concerned whether
the training data that they are using is representative of
all workloads that the application will be run on.

While it is beyond the scope of this paper to discuss so-
lutions to the build time problem, this paper will present
information on what is a representative workload, and ways
of visualizing this data so that it can be readily determined
whether the training workload is representative or not.

2 Method

The SPEC CPU2000 [4] benchmark suite was used for
this analysis. The benchmarks were compiled using the Sun
Studio 11 compiler and were run on an UltraSPARC III pro-
cessor. The suite has workloads of three different sizes for
each benchmark in the suite. Thetest workload for each
benchmark generally runs for less than a second, its pur-
pose being to test that the benchmark compiled. Thetrain-
ing workload is longer running, and this workload is used
when compiling the benchmark with profile feedback. The
final workload is thereferenceworkload which is used for
the timed run to generate the final scores.



CPU2000int Correspondence between CPU2000fp Correspondence between
Benchmark train and reference Benchmark train and reference
164.gzip 100% 168.wupwise 100%
175.vpr 100% 171.swim 100%
176.gcc 98% 172.mgrid 98%
181.mcf 100% 173.applu 100%
186.crafty 96% 177.mesa 96%
197.parser 99% 178.galgel 83%
252.eon 100% 179.art 100%
253.perlbmk 95% 183.equake 100%
254.gap 95% 187.facerec 100%
255.vortex 100% 188.ammp 100%
256.bzip2 96% 189.lucas 89%
300.twolf 100% 191.fma3d 100%

200.sixtrack 100%
301.apsi 72%

Table 1. Correspondence Values between train and reference workloads

To gather data on the correspondence between the branch
behaviors of the various workloads, the codes were com-
piled without profile feedback, and with low optimization
and then instrumented to collect data on both basic block
frequency and the frequency with which each branch state-
ment was taken or untaken. The instrumentation phase in-
volved disassembling the applications, adding instrumen-
tation code to the basic blocks, and then reassembling the
applications. This introduces significant overhead into the
run time, but does not alter the code paths.

The instrumented versions of the benchmarks were sep-
arately run on the training and reference workloads, leading
to two sets of branch and basic block data for each bench-
mark.

In some cases a single ‘workload’ may comprise sev-
eral runs of the application on different datasets. For these
benchmarks, the behavior over all the datasets was col-
lected.

3 Analysis using branch taken probabilities

For each branch statement in an executable, data was col-
lected on both the number of times that branch statement
was encountered, and the number of times the branch was
taken.

This data was collected for the train and reference work-
loads, and the results compared. The objective of this was
to determine whether the train workload is ‘representative’
of the reference workload. The following definition of rep-
resentative is proposed:

A representative training workload is one in
which the behavior of each individual branch

statement is similar to its behavior in the refer-
ence workload.

The above definition is still imprecise, because it relies
on the word ‘similar’. In fact, the definition is good, but
there are several ways of interpreting it.

• Static or dynamic: a critical difference is the number
of static branches compared the number of dynamic
branches. A static branch is one that appears in the
disassembly of the application, a dynamic branch is a
branch statement that gets encountered at runtime (ac-
cordingly, a single static branch can be encountered
multiple times at runtime, and hence contribute many
dynamic branches). For the purposes of this paper, the
dynamic behavior of the branches is considered more
important. The reason for this is that performance typ-
ically comes from improvements to the layout of the
code that are derived from knowing the branch proba-
bilities. The potential to improve performance depends
on how often that code is used during the reference run
of the benchmark. Hence improvements to the layout
of code that is only encountered a few times during the
run will have little opportunity to impact the runtime.

• Probabilities: although branches have probabilities of
being taken or untaken, this level of detail can be re-
duced to whether the branch is usually taken or usually
untaken. Put another way, a branch whose probability
of being taken is greater than a half, is a usually taken
branch. This is a useful simplification, since there is
little practical difference between a branch that is taken
80% of the time, compared to a branch that is taken
90% of the time - both probabilities imply the same
most likely code path. Using this simplification, one
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Figure 1. 300.twolf branch probabilities

measure of ‘representativeness’ is whether the branch
is usually taken or usually untaken in both the training
and reference workloads.

Taking these observations into account, a more precise
definition of representative can be proposed:

A representative training workload is one for
which each static branch is either usually taken
by both the training and reference workloads, or
usually untaken by both of them.

Using this definition, it is possible to determine a Cor-
respondence Value (CV), as illustrated in Equation 1. In
Equation 1, Fb is the number of times that a branch b is ex-
ecuted in the reference workload, TTb has the value one if
branch b is usually taken in the training workload (or zero
otherwise) and RTb has the value 1 if branch b is usually
taken in the reference workload (or zero otherwise).

CV =
∑
b(Fb ∗ (TTb == RTb))∑

b Fb
(1)

In this formula, the Correspondence Value ranges from
zero, indicating that there is no agreement on branches be-
tween the training and reference workloads, to one where
all the branches in both the training and reference work-
loads agree.

4 Results using the Correspondence Value

The Correspondence Value can be calculated for the
workload pair of train and reference. Table 1 shows the
results for the benchmarks in SPEC CPU2000.

From the results, it is apparent that most benchmarks
have good agreement between the behavior of the branches
in the training and reference workloads. However, three of
the benchmarks show poor agreement: 178.galgel, 189.lu-
cas, 301.apsi.

While it is useful to have a set of absolute numbers
that give an indication of the degree of agreement between
the workloads, it is rather hard to interpret these results.
To make the results easier to understand, it is possible to
present them graphically; the x and y axes on the charts are
the probability that a given branch is taken, and the size of
the mark made on the chart indicates the number of times
that branch was executed in the reference workload.

Figures 1 through 4 show results from four of the
26 benchmarks in SPEC CPU2000; 178.galgel, 301.apsi,
186.crafty, and 300.twolf. The x-axis in each graph
shows the probability of a branch being taken in the ref-
erence workload. The y-axis shows the probability of the
branch being taken in the training workload. Consequently
branches that are in the upper right or lower left quad-
rants are where the training and reference workloads agree,
branches that appear in the other two quadrants are where
the behavior in the training workload is not representative
of the behavior in the reference workload. The size of the
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Figure 2. 186.crafty branch probabilities
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Figure 3. 178.galgel branch probabilities
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Figure 4. 301.apsi branch probabilities

mark used to plot each data point is determined by the num-
ber of encounters for that branch in the reference workload
as a proportion of the maximum number of encounters for
any single branch . A frequently encountered branch will
have a large square, a branch that is rarely encountered will
be denoted by a small dot. Branches that would not appear
on the chart using this metric have had their point size in-
creased so that they are visible.

Focusing on each workload individually, it is possible to
observe:

• 300.twolf (Figure 1) shows very good correspondence
between the training and reference workloads. The
branches are all plotted in either the top right (indicat-
ing that they are usually taken for both the training and
reference workloads), or in the bottom left (indicating
that they are usually untaken in both training and refer-
ence workloads) quadrants. Furthermore the majority
of the branches that are frequently encountered in the
reference workload appear on the diagonal, which in-
dicates that the probability of them being taken is sim-
ilar for both workloads.

• 186.crafty (Figure 2) has many branches, the major-
ity of the branches are plotted in either the top right
or bottom left quadrants (indicating a good agree-
ment between training and reference workloads). The
branches are spread around the diagonal indicating that
the probability of being taken in the training and refer-
ence workloads are not exactly the same, but this is al-

most certainly a characteristic of the application rather
than a weakness in the quality of the training workload.
There are also a small number of branches that appear
in the top left and bottom right quadrants, indicating a
disagreement between the training and reference work-
loads, again this is probably to be expected.

• 178.galgel (Figure 3) has a few slightly important
branches that are plotted in the bottom right quad-
rant. These represent branches which are usually taken
in the reference workload, but untaken in the training
workload. The most frequently executed branches are
in the upper right quadrant, indicating that they are
usually taken for both the training and reference work-
load. This is to be expected of a floating point bench-
mark which has a number of loops with high trip count.

• 301.apsi (Figure 4), has a number of branches which
are poorly predicted by the training workload. There
are several significant branches that are plotted in the
lower right quadrant, indicating that they are usually
taken by the reference workload, but usually untaken
by the training workload. There are also a number of
branches, which are frequently executed by the refer-
ence workload, that are usually taken by the reference
workload, but are only taken half the time by the train-
ing workload.



CPU2000int Coverage of CPU2000fp Coverage of
Benchmark reference by train Benchmark reference by train
164.gzip 100% 168.wupwise 100%
175.vpr 100% 171.swim 100%
176.gcc 100% 172.mgrid 100%
181.mcf 100% 173.applu 100%
186.crafty 100% 177.mesa 98%
197.parser 100% 178.galgel 85%
252.eon 100% 179.art 100%
253.perlbmk 100% 183.equake 100%
254.gap 99% 187.facerec 100%
255.vortex 100% 188.ammp 100%
256.bzip2 100% 189.lucas 81%
300.twolf 100% 191.fma3d 100%

200.sixtrack 100%
301.apsi 37%

Table 2. Coverage between train and reference workloads

5 Analysis using basic blocks

An alternative approach is to use the execution counts for
basic blocks (a basic block is a small segment of code which
has only one entry point and all the instructions in the block
are executed the same number of times). An advantage of
this approach is for the situation where a single branch has
multiple possible targets (the exact target determined at run-
time), in this situation it is not possible to assign a branch
probability, but it is possible to look at the frequency of ex-
ecution of all the target basic blocks.

In the case of branches, it is possible to determine the
number of times that a branch is taken out of the total num-
ber of times that it could have been taken, and hence derive
a single valued probability of being taken for that branch.
Unfortunately, basic block counts lack a denominator that
could be used to convert them into a similar probability.
Furthermore, basic block counts will scale with runtime, so
the longer the run of the application, the more times each
basic block is executed. It is therefore necessary to turn the
basic block counts into something which has no dependency
on the length of the run.

The simplest way of converting basic block counts into
a single value is to use them to derive coverage data for the
pair of workloads. This leads to the following description
of a representative workload:

A representative training workload will exercise
all the frequency executed basic blocks of the ref-
erence workload.

This can be represented as follows: let Cti be a count of
the number of times that the basic block was executed in the
training workload. Let Cri be the number of times that the

basic block was executed in the reference workload. The
coverage can be calculated as illustrated in Equation 2.

coverage =
∑
i Cri ∗ (Cti > 0)∑

i Cri
(2)

The value for coverage runs from zero, indicating that
none of the frequently executed basic blocks in the refer-
ence workload are executed by the training workload, to one
indicating that the training workload executes all the basic
blocks that the reference workload uses.

Other, more elaborate, formulae for handling basic block
counts were considered. However the more complex formu-
lae produced results which were more subject to interpreta-
tion than this simple measure of code coverage. The other
consideration is that a training workload which fails to even
cover the critical sections of the real workload is obviously
unable to provide correct training data.

6 Results using basic block coverage

The results for basic block coverage are illustrated in Ta-
ble 2. The data shows that the training workloads for most
of the benchmarks cover all the important basic blocks for
the reference workloads. Unfortunately, three benchmarks
have training workloads that are inadequate: 178.galgel,
189.lucas, and 301.apsi. With 37% coverage, 301.apsi has
very low coverage of the reference workload by the training
workload.

Again, it is easier to interpret this data when presented
in a graphical format. In the graphs depicting coverage, the
basic blocks are sorted into order of increasing execution
count. The x-axis shows the basic block ordering for the
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Figure 5. 300.twolf code coverage agreement
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reference workload, the y-axis shows the basic block or-
dering for the training workload. A basic block which has
a low execution count for both the training and reference
workloads will appear at the origin; a basic block which has
a high execution count for both the training and reference
workloads will appear at the top right of the chart. The size
of the mark used for each data point corresponds to the ex-
ecution count of the basic block in the reference workload
scaled against the execution count for the basic block with
the highest execution count. Blocks that would not appear
on the chart using this metric have had their point sized in-
creased so as to be visible.

It is worth observing that the size of the mark is corre-
lated with the order of the block on the x-axis, but the size of
the mark conveys additional information. Two basic blocks
may have adjacent ordering, but have very different execu-
tion counts.

In these charts, the ideal shape would be a line that from
bottom left to top right that indicates that the basic blocks in
the training dataset are ordered in the same way as the ba-
sic blocks in the reference dataset. A shape which indicates
poor agreement, between the training and reference work-
loads, would manifest as important basic blocks appearing
significantly off the diagonal.

The charts convey slightly more information than the cal-
culations of coverage. The coverage calculation is just eval-
uating the important basic blocks in the reference workload
that are not executed in the training workload. These ba-
sic blocks will appear along the y=0 axis in the chart. The
charts display more information than this, since they will
also highlight blocks which are rarely executed in the train-
ing workload but frequently executed in the reference work-
load.

Figures 5 and 6 show the basic block count correspon-
dence for the benchmarks 301.apsi and 300.twolf and illus-
trate:

• 300.twolf (Figure 5) has the shape of a ’lolly-pop’ all
the basic blocks that have high execution count in the
reference workload are also the most frequently exe-
cuted blocks in the training workload.

• 301.apsi (Figure 6) has a problem where the frequently
executed basic blocks in the reference workload are not
executed in the training workload.

7 Discussion of coverage data

It would seem reasonable to expect that the basic block
count data could be used in more advanced ways than to
just calculate coverage. In fact, it would seem that cover-
age would be such a simple measure that it would not help.
However, coverage actually turns out to be a useful measure
for the following two reasons:

1. It is easy to calculate, and there is no ambiguity or sub-
jectiveness in the results.

2. It is a low bar for representativeness of the code, train-
ing workloads which do not cover the important sec-
tions of the application cannot train those sections.

Several alternatives were considered, such as a correla-
tions based on the order of the basic blocks or a comparison
of the profiles of the two workloads. However these had a
number of issues:

• The formulae made some assumptions about the distri-
bution of the data, and these assumptions may not have
been valid for all situations.

• The results of the formulae were often skewed either
by the number of unimportant blocks, or by a slight
difference in ordering for the important blocks. This
rendered the formulae either very insensitive, or very
sensitive.

• If the training workload over-trained an area of the
code, this changed the profile making it dissimilar to
the reference workload, even if the critical sections of
the workload matched.

• The calculations produced numbers which were statis-
tics with no connection to a characteristic of the actual
code.

8 Related Work

There is a significant body of research focussed on feed-
back profile optimizations and workloads. In [5], the effec-
tiveness of the training profile is investigated by examining
the performance benefits observed by leveraging a specific
profile. In [6], the author discuses the problems associated
with generating profile data for dynamic libraries, which
are used by numerous applications in varying ways. In [7],
the authors introduce a metric, instructions per mispredicted
branch, for determining the importance of profile feedback
optimizations for a specific application. They use this to
evaluate whether training data will result in a significant
performance gain, which is a complementary approach to
that taken in this paper, where we reduce the problem space
by focusing on just the branch and basic block behaviors.

Much of the recent research that is relevant to our dis-
cussion of ‘representative’ workloads for feedback profile
optimizations has been undertaken, not in the context of
FPO analysis, but rather to reduce the simulation space
for processor design. Rigorous, data-driven, processor de-
sign, requires simulation time of target workloads on cycle-
accurate simulators. These simulators are slow and, as a
result, it is infeasible to simulate the entirety of every target



application. In [8], the authors investigate the validity of us-
ing smaller datasets to decrease the simulation of the target
applications. Looking at SPECint2000, the authors illus-
trate that the use of the short-duration test or training work-
loads impacts procedure coverage, IPC, cache miss rates
and impacts the frequent execution paths. In [9], the au-
thors investigate the use of a single application to represent
the behavior of a wide class of target applications. Again,
the authors wrestle with the definition of a representative
workload. In [10], the authors undertake a clustering anal-
ysis and measure the similarity of the benchmarks in four
generations of the SPEC CPU suite.

Our paper builds on this research, not only by investi-
gating the entire SPEC CPU benchmark suite, but also by
introducing quantitative metrics that can be used to define
the degree to which a workload is ‘representative’.

9 Conclusions

This paper evaluates the agreement between training and
reference workloads in the context of code paths. It does not
attempt to determine whether the cache access behavior is
similar for the two workloads, or many other ways in which
two workloads could be evaluated for ’representativeness’.
Code path optimizations are the most common use of profile
feedback information, so it is most important to ensure that
the training workloads are at least meeting this criteria.

Two approaches are presented in this paper for evalu-
ating whether a given training workload is ’representative’
of a particular reference workload. These are to evaluate
whether the branches are exercised in similar ways by the
two workloads, and also to evaluate whether the training
workload covers the same code as the reference workload.

The code coverage can be seen as the lowest bar for a
workload to be declared representative. If a training work-
load fails to cover critical sections of the reference work-
load, then it has failed in its required purpose. To put this
another way, there is no point in running a training workload
that imparts no information that can be used in improving
the important parts of the code.

The evaluation of branch behaviors is a more detailed
level of analysis. It may be, as in the benchmark 186.crafty,
that the behavior of the branches is somewhat unpre-
dictable. In which case, searching for a more representative
training workload may be a futile exercise.

The benchmark 301.apsi demonstrates that the two ap-
proaches complement rather than contradict each other. Us-
ing both methods, this benchmark comes out showing seri-
ous problems in the ability of the training workload to ad-
equately represent the reference workload. The coverage
data clearly shows that the problem lies with large sections
of the critical code for the reference workload not being ex-
ecuted by the training workload.

Using the techniques presented in this paper it is possi-
ble to evaluate the representativeness of the workload, and
come to a conclusion as to whether the workload used in the
profile feedback build is representative of the various work-
loads that will be run on the application. Evaluating both
the coverage of the training workload, and also the behavior
of the individual branches is a necessary step in evaluating
whether the training workload is ’representative’. The find-
ings from this evaluation can be used to determine whether
to change the training workload, or whether to add addi-
tional training workloads to improve coverage.
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