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1. Introduction 
 

Languages such as Java, C++ and C# have become languages of choice in many domains due to 

their object oriented nature. Object oriented programs are rich with features that reduce the 

programmer effort and increase manageability of code by encouraging modularity. One key 

feature that helps in this is polymorphism. Modern languages include dynamically-dispatched 

function calls (i.e. virtual functions) to support polymorphism. The targets of these functions are 

not known until run-time because they depend on the dynamic type of the object on which the 

function is called. The instruction set architecture uses indirect branches and calls to implement 

these function calls. In general it is expected that object oriented programs will lead to an increase 

in control flow, particularly in the percent of indirect branches which are considered difficult to 

predict by past research [6, 10, 11].  
 
Over the years SPEC CPU benchmark suites have included more and more C++ programs. In 

SPEC CPU 2006, there are three C++ integer benchmarks and four floating-point C++ 

benchmarks (a total of 7 benchmarks). In comparison SPEC CPU2000 has only one C++ 

benchmark - 252.eon. In this context we consider two questions of interest: 

 

1) How object oriented are the C++ programs in SPEC CPU 2006? How do they compare to 

other object oriented benchmarks?  

2) How different is the control flow of C++ programs in SPEC CPU2006 compared to the rest of 

the suite?  

 

Not all C++ programs have similar degree of object oriented nature. The multitude of code 

standards and ambiguities in the standard makes inclusion of C++ code in the benchmarks 

difficult. This fact is highlighted by Wong [8] who analyzed the C++ benchmarks in SPEC CPU 

2006 at the source code level. The analysis gives a good overview of the programs covering the 

code composition, construction and libraries used. It highlights the fact that SPEC CPU2006 has 

not taken the lowest common denominator of C++ style for ease of portability but rather has tried 

to include a spectrum of C++ code ranging from basic inheritance to generic programming to 

template programming. Table 1 summarizes the C++ programs in SPEC CPU2006.  The study 

observes that 473.astar, 444.namd and 450.soplex are light in its use of object oriented features. 

While Wong [8] commented on the object orientedness of the benchmark no quantifiable metrics 

are used. To address the first question we raised previously, we will use complexity of the code as 

a means to measure and compare the object oriented nature of SPEC CPU’s C++ programs and 

other object oriented programs. We will measure the code complexity, code structure, object-

oriented features, class hierarchies, etc using the popular Chidamber and Kemerer (C-K) metrics 

[2]. We will also measure these object oriented features for some of the Java benchmarks(SPEC 

jvm98 and SPEC jbb2000) and compare them to the C++ programs in SPEC CPU2006. Further 

more we analyze the impact the object oriented nature of C++ programs has on the control flow 

characteristics of the code. This should help us address the second question. 
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Benchmark Files Lines Symbols Comments 

471.omnetpp 155 47,910 1,428 It will encourage the OS to speed up malloc and may 

encourage optimizers to perform malloc optimization. 

473.astar 20 5,849 176 It makes very little use of C++ features 

483.xlanackbmk 1773 553,643 10,426 A large e-business app that also uses STL with very 

large data input set. It will push most stack memory to 

the limit while encouraging malloc improvement.  

444.namd 33 5,322 410 A good HPC benchmark but somewhat simple 

447.dealII 452 198,649 4,801 Uses Boost libraries and complex template techniques. 

Best representative of future C++ directions.  

450.soplex 124 41,435 195 Not very high on usage of C++ features. 

453.povray 210 155,170 6,761 It is representative of C++ the way it is used currently. 

Has potential single hot spot in the noise function. 

Table 1: Summary of C++ programs in SPEC CPU 2006[8] 
 

The rest of the paper is organized as follows. Section 2 will introduce our measurement and 

analysis methodology. Section 3 will analyze the C++ programs for their object oriented nature 

and go on to contrast them with other object oriented benchmarks (Java). The fourth section deals 

with the analysis of what difference we observe in the control flow due to object oriented 

programming. Our concluding discussion is present in section 5.  

2. Methodology  

2.1 Measurements  
 
In this study we use the 12 integer and 17 floating point programs of the SPEC CPU 2006[9] 

benchmark suite. We also use two Java benchmarks, SPEC jvm98 and SPECjbb 2000, to 

compare the object oriented nature of the C++ benchmarks. The performance and impact of 

control flow is measured using corresponding performance counter events on two different 

processors - a POWER5+ and Woodcrest microprocessor. Both POWER5+ and Woodcrest 

microprocessors provide on-chip logic to monitor processor related performance events. The 

POWER5+ Performance Monitor Unit (Unit) contains two dedicated registers that count 

instructions completed and total cycles as well as four programmable registers which can count 

more than 300 hardware events occurring in the processor or memory system. The Woodcrest 

architecture has a similar set of registers, two dedicated and two programmable registers. These 

registers can count various performance events such as cache misses, TLB misses, instruction 

types, branch miss-prediction etc. The perfex utility from the Perfctr tool is used to perform the 

counter measurements on Woodcrest. A tool from IBM was used for making the measurements 

on POWER5+.  

 

The Intel Woodcrest processor supports both 32 bit as well as 64bit binaries. The data we present 

for Woodcrest corresponds to the best runtime for each benchmark (hence is a mix of 64-bit and 

32 bit applications). Except for gcc, gobmk, omnetpp, xalancbmk and soplex, all other programs 

were in the 64bit mode. The benchmarks for POWER5+ where compiled using Compilers: XL 

FORTRAN Enterprise Edition 10.01 for AIX and XL C/C++ Enterprise Edition 8.0 for AIX. The 

POWER5+ binaries where compiled using the flags: C/C++ -O5 -qlargepage -qipa=noobject -

D_ILS_MACROS -qalias=noansi -qalloca + PDF (-qpdf1/-qpdf2) FP - O5 -qlargepage -

qsmallstack=dynlenonheap -qalias=nostd + PDF (-qpdf1/-qpdf2). The OS used was AIX 5L 

V5.3 TL05.The benchmarks on Woodcrest where compiled using Intel’s compilers - Intel(R) C 

Compiler for 32-bit applications/ EM64T-based applications Version 9.1 and Intel(R) Fortran 
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Compiler for 32-bit applications/ EM64T-based applications, Version 9.1. The binaries where 

compiled using the flag: -xP -O3 -ipo -no-prec-div / -prof-gen -prof-use. Woodcrest was 

configured to run using SUSE LINUX 10.1 (X86-64). 

 

2.2 Principal Component Analysis and Clustering 

 
In order to understand the similarity/dissimilarity between C++, non-C++ and Java programs, we 

use Principal Component Analysis (PCA) and clustering [4, 5]. PCA is a multivariate statistical 

technique that reduces a large N-dimensional space into a lower dimensional uncorrelated space 

with very little loss of information. In order to isolate the effect of varying ranges of each 

parameter, the data is first normalized to a unit normal distribution, i.e. a normal distribution with 

mean equal to zero and standard deviation equal to 1, for each variable. PCA helps to reduce the 

dimensionality of a data set while retaining most of the original information. PCA computes new 

variables, so-called principal components, which are linear combinations of the original variables, 

such that all the principal components are uncorrelated. PCA transforms p variables X1, X2,...., 

Xp into p principal components (PC) Z1,Z2,…,Zp  such that:  

∑
=

=

p

j jiji XaZ
0  

 This transformation has the property Var [Z1] ≥ Var [Z2] ≥…≥ Var [Zp] which means that Z1 

contains the most information and Zp the least.  Given this property of decreasing variance of the 

PCs, we can remove the components with the lower values of variance from the analysis.  This 

reduces the dimensionality of the data set while controlling the amount of information that is lost. 

We use a standard technique (Kaiser Criterion) to choose PCs where only the top few PCs which 

have eigenvalues greater than or equal to one are retained.  For details on PCA please refer to [3].  

After PCA, the workload space is projected using the most important principal components, or 

linkage distance between the programs is computed. 

3. How object oriented are the C++ programs in 
CPU2006? 
 

We will use complexity of the code as a means to measure and compare the object oriented nature 

of SPEC CPU’s C++ programs and other object oriented programs. We will measure the code 

complexity, code structure, object-oriented features, class hierarchies, etc using the popular 

Chidamber and Kemerer (C-K) metrics [2]. 

3.1 Code Complexity Metrics – C-K metric 

 
Chidamber and Kemerrer [2] proposed several object oriented programming metrics in order to 

quantify code complexity.  These metrics include Depth of Inheritance tree, number of children, 

coupling between classes, etc. We use the software package ckjm [7] and CCCC[12] to measure 

these metrics. As in prior work [1], the libraries are excluded from the analysis as they are heavily 

duplicated across the benchmarks. These metrics are described in short as follows.  

 
WMC (Weighted Methods per Class): WMC for a given program is measured by adding 

complexity of a program’s methods. Ckjm assigns a complexity value of 1 to each method, and 

therefore the WMC value is equal to the number of declared methods in the loaded classes. Large 
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numbers thus show that a class provides a variety of different behaviors in the form of different 

methods/functions. 

DIT (Depth of Inheritance Tree): DIT provides for each class a measure of the inheritance 

levels from the top of the object hierarchy. In Java where all classes inherit object the minimum 

value of DIT is 1. 

NOC (Number of Children): NOC measures the number of immediate subclasses of the class. 

CBO (Coupling Between Objects): For a given class CBO measures the number of classes 

coupled to a given class. Classes may be coupled via method calls, field accesses, inheritance, 

arguments, return types, and exceptions. The metric measures code complexity in terms of 

interactions between objects and classes. 

RFC (Response for a Class): RFC measures the number of different methods that may execute 

when a method is invoked. Ckjm calculates a rough approximation to the response set by 

inspecting method calls within the class’s method bodies. 

3.2 Object orientedness: C++ benchmarks in SPEC CPU 2006 
 

We present the C-K metrics data for the C++ programs in SPEC CPU 2006 in Table 2. We can 

see that both astar and namd have low method per class count (WMC) - 85 and 48 respectively. It 

is interesting to note from Table 1 that they also have the lowest number of files in code, 20 & 33, 

compared to the others which have 100s of files. These two programs are low in other metrics 

like DIT, NOC, CBO and RFC. It seems that namd which has the lowest value for all the 5 

metrics is the least object oriented of the 7 programs. Thus both namd and astar have very low 

object oriented nature. This seems to agree with the empirical observation made by Wong [8]. 

The benchmarks commented to be low in object orientedness by Wong [8] are marked by a 

darker background.  

Benchmarks WMC DIT NOC CBO RFC 

SPEC cpu ’06 – 

C++      

471.omnetpp 463 28 24 106 569 

473.astar 85 0 0 50 135 

483.xlanackbmk 7219 3 3 3686 10905 

444.namd 48 0 0 36 84 

447.dealII 1163 6 6 788 1951 

450.soplex 685 1 1 268 953 

453.povray 1743 0 0 134 1877 

MIN 48 0 0 36 84 

MAX 7219 28 24 3686 10905 

AVG 1629.43 5.43 4.86 724.00 2353.43 

Table 2: C-K metrics for C++ programs in SPEC CPU 2006 
 

To better analyze the data in Table 2 we visualize it using PCA. The first two principle 

components make up for 98% of the variance and scatter plot of the two PCs is constructed in 

Figure 1. We note that xalanckbmk and omnetpp are distinctly different from the other 

benchmarks. Four of the seven benchmarks are clustered together (marked by the red box in Fig 

1). Although dealII is not as far removed from this cluster as xalanckbmk and omnetpp are, it is 

also not part of the cluster. Since the cluster includes both namd and astar the other two programs 

in the cluster, soplex and povray, could be considered to be similar to namd and astar in their 

object oriented nature i.e. low object orientedness.  
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Fig 1. PC scatter plot of C-K metrics for C++ programs in SPEC CPU 2006 

 

3.3 Object orientedness: C++ benchmarks vs. Java benchmarks 

 

Benchmark WMC DIT NOC CBO RFC 

SPEC      

201.compress 154 19 0 55 426 

202.jess 614 97 1 632 1846 

205.raytrace 330 33 3 117 743 

209.db 152 12 0 42 454 

213.javac 1011 186 38 1175 3293 

222.mpegaudio 367 40 0 167 796 

227.mtrt 332 33 3 117 743 

228.jack 375 46 0 163 860 

pseudojbb 541 35 0 254 1419 

Min 152 12 0 42 426 

Max 1011 186 38 1175 3293 

Avg 430.67 55.67 5.00 302.44 1175.56 

Table 3: C-K metrics for Java benchmarks 
 

It of interest to find out how the C++ benchmarks stack up against other common Java 

benchmarks in terms of object oriented features. To perform this comparison we collect C-K 

metrics for SPEC jvm98 as well as SPEC jbb2000. This data is presented in table 3. Among these 

benchmarks we see that 213.javac stands out with the highest value for all the 5 metrics. Among 

the C++ benchmarks presented in Table 2 we can see that xalancbmk has the highest value for 3 

of the 5 metrics. It is difficult to compare these two sets (C++ and java benchmarks) purely based 

on the numbers and so we resort to visualizing it using PCA. The PCA scatter plot of two of the 
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principle components (PCs) that account for 90% of the variance is sketched in Figure 2. The 

C++ programs are represented by the dark circles while the java benchmarks are represented by 

the triangles. The PC plot shows xalancbmk and 213.javac as being distinct compared to the other 

benchmarks. All the other C++ and Java benchmarks are clustered together in the top right corner 

of the plot indicating the relative similarity between them. Over all we infer that the C++ 

programs in SPEC CPU 2006 are at least as object oriented as SPEC jvm98 and SPEC jbb2000 

benchmarks. A similar analysis can be done for other benchmarks like the DaCapo java 

benchmark [1]. The DaCapo benchmark is known to be significantly more complex[1] compared 

to the other SPEC java benchmarks. In other words a PC scatter plot like Figure 2 with DaCapo 

and the other Java benchmarks would show the SPEC Java benchmarks being clustered together 

due to the larger complexity of DaCapo. Thus, due to the complexity of DaCapo, the SPEC C++ 

programs would be dwarfed and a comparison with it would not be very informative. So in this 

study we have not included such an analysis. 

 

 
Fig 2. PC scatter plot of C-K metrics of Java benchmarks. 

4. Control flow characteristics of C++ programs 
 
Various object oriented properties are expected to affect the programs impact on the micro-

architecture by changing the control flow characteristics. In this section we use data collected 

from a Woodcrest processor to determine such an impact. 

 

First we consider the branch composition i.e. the type of branches, in C++ benchmarks compared 

to the others. Table 4 presents the percentage of branches and the type of branches. Branches are 

grouped as conditional branches (CND), function returns (RET), function calls (CALL) and 

indirect branches (IND). The most striking fact about the integer C++ benchmark is the lack of 
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significant difference in the percentage of branches compared to the non-C++ benchmarks. The 

non-C++ integer programs had an average of 18.34% branches while C++ integer programs have 

21.13% branches. Among floating point benchmarks we see a stronger influence of the C++ 

nature of the code. Three out of the 4 C++ floating-point programs, dealII, soplex and povray, 

have a branch percentage higher than 14%. This is significantly higher than most of the other 

floating-point programs. The non-C++ FP programs have an average of 3.82% branches 

compared to the C++ FP programs with 13.2% branches. 

 
Fig 3. (a) Integer - PC scatter plot of branch types. 

 
It is expected that object oriented programs would increase the percentage of function calls and 

indirect branches. We look for this behavior in the data we collected. In table 4 we see that the 

percentage of indirect branches is not significantly different for C++ benchmarks. 447.dealII is an 

exception with 7% of the branches being indirect branches. The percentage of returns and calls 

demonstrate a better distinction between C++ and non C++ programs in some of the cases. For 

example 483.xalancbmk has 6.5% and 6.3% return and call branches which is higher than the 

other non-C++ programs. Although some of the C++ programs have such a distinction there is a 

lack of consistency. Some of the C++ programs have a very low percentage of indirect branches, 

return branches and call branches.  471.omnetpp, 483.xalancbmk and 447.dealII have a higher 

percentage of return branches, call branches and indirect branches. This agrees well with our 

observation from Section 3.2 where these three programs where found to have the most object 

oriented behavior. Among the floating point C++ benchmarks the percentage of branch 

instructions is clearly higher than that of the other floating point programs. It seems object 

oriented nature has increased the amount of control flow activity in floating point programs using 

object oriented nature. The same observation doesn’t hold true for integer programs. This is 

probably because floating point programs are typically low in the percentage of branches and 

object oriented programming caused an increase in branch percentage to the level of integer 
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benchmarks. Although object oriented programming has increased branches such as calls, returns 

and indirect branches as a percentage of the number of branch instructions this increase is not as 

significant when compared to the total number of instructions.  

 

BENCHMARK % Branch Inst % RET Br % CALL Br % CND Br % IND Br 

  per BR inst per Inst per BR inst per Inst per BR inst per Inst per BR inst per Inst 

400.perlbench 23.27% 3.47% 0.81% 3.41% 0.79% 84.94% 19.76% 1.96% 0.46% 

401.bzip2 15.29% 1.91% 0.29% 1.84% 0.28% 87.83% 13.43% 0.06% 0.01% 

403.gcc 21.92% 3.53% 0.77% 3.99% 0.87% 85.60% 18.77% 0.84% 0.18% 

429.mcf 19.23% 0.20% 0.04% 0.20% 0.04% 94.36% 18.15% 0.00% 0.00% 

445.gobmk 20.75% 2.50% 0.52% 2.78% 0.58% 87.72% 18.20% 0.04% 0.01% 

456.hmmer 8.37% 0.32% 0.03% 0.31% 0.03% 98.69% 8.26% 0.30% 0.03% 

458.sjeng 21.41% 2.83% 0.61% 2.87% 0.62% 83.89% 17.96% 3.03% 0.65% 

462.libquantum 27.26% 0.19% 0.05% 0.20% 0.05% 95.73% 26.10% 0.19% 0.05% 

464.h264ref 7.54% 2.84% 0.21% 2.88% 0.22% 88.12% 6.65% 0.73% 0.05% 

Avg 18.34% 1.98% 0.37% 2.05% 0.39% 89.65% 16.36% 0.79% 0.16% 

INT – C++          

471.omnetpp 20.68% 5.64% 1.17% 5.60% 1.16% 81.62% 16.88% 1.47% 0.30% 

473.astar 17.07% 0.04% 0.01% 0.04% 0.01% 96.84% 16.53% 0.01% 0.00% 

483.xalancbmk 25.65% 6.43% 1.65% 6.34% 1.63% 82.62% 21.19% 3.74% 0.96% 

Avg 21.13% 4.04% 0.94% 3.99% 0.93% 87.03% 18.20% 1.74% 0.42% 

FP          

410.bwaves 0.70% 2.50% 0.02% 2.50% 0.02% 92.70% 0.65% 0.00% 0.00% 

416.gamess 7.90% 1.00% 0.08% 1.00% 0.08% 92.30% 7.29% 2.00% 0.16% 

433.milc 1.50% 1.40% 0.02% 1.50% 0.02% 92.30% 1.38% 2.10% 0.03% 

434.zeusmp 4.00% 0.00% 0.00% 0.00% 0.00% 99.80% 3.99% 0.00% 0.00% 

435.gromacs 3.40% 0.30% 0.01% 0.30% 0.01% 89.20% 3.03% 0.00% 0.00% 

436.cactusADM 0.20% 0.10% 0.00% 0.10% 0.00% 96.70% 0.19% 0.20% 0.00% 

437.leslie3d 3.20% 0.00% 0.00% 0.00% 0.00% 94.90% 3.04% 0.00% 0.00% 

454.calculix 4.60% 0.30% 0.01% 0.30% 0.01% 96.00% 4.42% 0.10% 0.00% 

459.GemsFDTD 1.50% 5.90% 0.09% 5.90% 0.09% 84.60% 1.27% 0.10% 0.00% 

465.tonto 5.90% 3.50% 0.21% 3.50% 0.21% 87.10% 5.14% 0.40% 0.02% 

470.lbm 0.90% 0.00% 0.00% 0.00% 0.00% 96.60% 0.87% 0.00% 0.00% 

481.wrf 5.70% 2.10% 0.12% 2.10% 0.12% 91.80% 5.23% 0.00% 0.00% 

482.sphinx3 10.20% 0.60% 0.06% 0.60% 0.06% 95.60% 9.75% 0.10% 0.01% 

Avg 3.82% 1.36% 0.05% 1.37% 0.05% 93.05% 3.56% 0.38% 0.02% 

FP – C++          

444.namd 4.90% 0.00% 0.00% 0.00% 0.00% 98.00% 4.80% 0.00% 0.00% 

447.dealII 17.20% 5.30% 0.91% 4.90% 0.84% 73.40% 12.62% 7.70% 1.32% 

450.soplex 16.40% 0.80% 0.13% 0.80% 0.13% 94.30% 15.47% 0.10% 0.02% 

453.povray 14.30% 2.30% 0.33% 2.40% 0.34% 86.30% 12.34% 0.90% 0.13% 

Avg 13.20% 2.10% 0.34% 2.03% 0.33% 88.00% 11.31% 2.18% 0.37% 

Table 4: Branch types in SPEC CPU 2006 programs 

 
To better illustrate the comparison we use Principle Component Analysis and project the reduced 

dimension space in Figures 3 a. & 3 b. Only branch type percentages computed at a per 

instruction basis is included in the PCA analysis used for the plot. In Fig 3 a. we note that all the 

integer benchmarks are spread around. Most of the Integer C++ benchmarks have non C++ 

benchmarks in the vicinity. In Fig 3 a. 483.xalancbmk is the C++ program most distinct in branch 
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composition. Among floating point programs (Fig 3 b.) dealII stands out distinctly. Soplex and 

povray too demonstrate sufficient difference compared to the others but not as much as dealII. 

The distinction in dealII can be attributed to multiple reasons – the percentage of branches, 

percentage of calls, returns as well as indirect branches. dealII has the highest percentage of 

indirect branches – 7.7% of the branches which is 1.32% of the instructions. With 5.3% and 4.9% 

of the branches (0.91% and 0.84% of instructions) being RET and CALL branches respectively, 

dealII tops the percentage of RET and CALL branches too. On average non-C++ and C++ 

programs in Floating point benchmarks are different. For example the average percentage of 

branches for non-C++ FP programs is 3.82% while the same is 13.20% for C++ FP programs. We 

see the same difference different types of branches including indirect branches – 0.28% for non-

C++ vs. 2.18% for C++.  

 

 
Fig 3. (b) FP - PC scatter plot of branch types.  

 

Table 5 presents the branch misprediction statistics for the SPEC CPU 2006 benchmarks 

measured on Woodcrest. Similar measurement made on Power 5+ is included in the Appendix as 

Table A-1. The benchmarks are grouped as a permutation of INT vs. FP and non-C++ vs. C++. 

The aspect of note is the difference between floating point C++ and floating point non-C++ 

programs. This trend is inline with the branch type characteristics observed before. For better 

clarity we use PCA on this data after accounting for the branch percentage i.e. the misprediction 

is computed on the total number of instructions. Figure 4 (a&b) contains this PCA plot. It can be 

clearly seen that among Integer benchmarks both C++ and non-C++ programs are mixed together 

in space. On the other hand the C++ floating-point benchmarks povray, soplex and dealII are all 

distant enough from the cluster of non-C++ programs. 482.sphinx is seen close to dealII and we 

find from the data in table 5 that it has a high percentage of branches (10.2%) and various 

mispredictions.  
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 % Branch Inst % misprediction 

BENCHMARK  Branch  RET Br  CALL Br  CND Br  IND Br  not taken Taken 

400.perlbench 23.27% 0.38% 1.29% 7.49% 1.58% 15.14% 0.88% 2.98% 

401.bzip2 15.29% 0.78% 13.72% 0.00% 5.46% 0.14% 4.61% 5.57% 

403.gcc 21.92% 0.56% 4.74% 0.14% 2.77% 14.91% 1.82% 3.46% 

429.mcf 19.23% 1.12% 2.98% 0.00% 5.75% 0.27% 4.36% 7.93% 

445.gobmk 20.75% 2.25% 11.41% 0.11% 12.11% 21.64% 8.82% 13.66% 

456.hmmer 8.37% 0.88% 13.29% 0.00% 10.53% 0.11% 8.56% 12.99% 

458.sjeng 21.41% 1.41% 9.31% 6.66% 6.81% 24.37% 4.22% 10.45% 

462.libquantum 27.26% 1.36% 0.00% 0.00% 4.92% 0.00% 7.65% 3.74% 

464.h264ref 7.54% 0.16% 4.68% 0.10% 2.33% 1.12% 2.98% 1.67% 

Avg 18.34% 0.99% 6.82% 1.61% 5.81% 8.63% 4.88% 6.94% 

INT – C++         

471.omnetpp 20.68% 0.51% 3.42% 0.13% 2.99% 0.55% 1.69% 3.83% 

473.astar 17.07% 2.42% 7.60% 0.00% 13.62% 0.15% 13.28% 15.22% 

483.xalancbmk 25.65% 0.32% 7.63% 0.62% 0.86% 1.94% 0.56% 2.08% 

Avg 21.13% 1.08% 6.22% 0.25% 5.82% 0.88% 5.18% 7.04% 

FP         

410.bwaves 0.70% 1.30% 0.00% 0.00% 1.40% 46.70% 14.00% 0.00% 

416.gamess 7.90% 1.60% 0.90% 0.00% 1.60% 7.30% 1.90% 1.30% 

433.milc 1.50% 0.00% 0.00% 0.00% 0.00% 0.00% 0.20% 0.00% 

434.zeusmp 4.00% 1.30% 0.30% 0.00% 1.30% 16.10% 1.70% 1.00% 

435.gromacs 3.40% 6.20% 0.30% 0.00% 7.10% 0.40% 6.60% 6.60% 

436.cactusADM 0.20% 0.50% 3.80% 1.80% 0.60% 0.60% 3.60% 0.10% 

437.leslie3d 3.20% 0.60% 4.10% 0.60% 0.60% 5.90% 2.90% 0.10% 

454.calculix 4.60% 2.50% 4.30% 0.00% 2.60% 4.30% 2.80% 2.50% 

459.GemsFDTD 1.50% 1.90% 0.10% 0.00% 2.30% 11.70% 8.30% 0.70% 

465.tonto 5.90% 1.70% 1.00% 0.00% 1.90% 0.30% 2.60% 1.30% 

470.lbm 0.90% 0.40% 0.20% 0.00% 0.50% 0.00% 1.20% 0.10% 

481.wrf 5.70% 1.40% 0.30% 0.00% 1.50% 1.20% 4.80% 0.50% 

482.sphinx3 10.20% 3.80% 7.80% 0.00% 4.10% 1.40% 3.90% 4.10% 

Avg 3.82% 1.78% 1.78% 0.18% 1.96% 7.38% 4.19% 1.41% 

FP – C++         

 444.namd 4.90% 4.80% 0.40% 0.00% 4.50% 21.30% 5.80% 4.50% 

447.dealII 17.20% 3.00% 0.80% 0.00% 4.00% 0.50% 3.90% 2.60% 

450.soplex 16.40% 5.60% 0.70% 0.00% 5.70% 2.20% 8.30% 4.40% 

453.povray 14.30% 4.30% 3.00% 13.00% 3.90% 36.00% 2.60% 6.10% 

Avg 13.20% 4.43% 1.23% 3.25% 4.53% 15.00% 5.15% 4.40% 

Table 5: misprediction characteristics of SPEC CPU 2006 
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Fig 4. (a) Integer - PC scatter plot of branch misprediction. 

 

 
Fig 4. (a) FP - PC scatter plot of branch misprediction. 
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5. Conclusion 
 

Object oriented programming has gained in popularity due to their features that reduce the 

programmer effort and increase manageability of code. From prior studies it is expected that 

object oriented programs would increase the percentage of function calls and indirect branches. 

The presence of seven C++ programs in the SPEC CPU 2006 suite gives us a chance to study 

these programs for their object oriented nature and the impact C++ code style has had on control 

flow. 

 

We use C-K metrics to measure the object oriented nature of the C++ code and find that some of 

the C++ programs are much more object oriented than others. Xlanckbmk, dealII and omnetpp 

exhibit strong object oriented characteristics. To find out how object oriented these C++ 

programs are compared to other object oriented language benchmarks we compare them with 

SPEC jvm98 and SPEC jbb2000. In comparing them we find that the C++ programs in SPEC 

CPU 2006 are not any worse off than the java programs. This is a very encouraging sign.  

 

Our study also attempts to find the impact object oriented nature of the code has on control flow 

characteristics of the code. We find that the change in control flow behavior depends on the 

amount of object oreintedness of the code. The change in control flow due to object oriented 

coding is pronounced among floating point benchmarks compared to integer benchmarks.  
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Appendix 
 % Branch Inst % misprediction 

BENCHMARK  Branch  Conditional Br  Target Address prediction  

400.perlbench 18.15% 6.10% 3.69% 2.41% 

401.bzip2 15.31% 7.18% 7.18% 0.00% 

403.gcc 19.24% 4.18% 3.67% 0.52% 

429.mcf 17.05% 5.64% 5.62% 0.02% 

445.gobmk 16.25% 11.96% 11.62% 0.34% 

458.sjeng 17.87% 10.48% 8.19% 2.29% 

462.libquantum 21.34% 3.28% 3.28% 0.00% 

464.h264ref 7.22% 5.10% 4.80% 0.29% 

Avg 16.55% 6.74% 6.00% 0.73% 

INT – C++     

471.omnetpp 19.45% 5.42% 3.92% 1.50% 

473.astar 13.08% 15.16% 15.16% 0.00% 

483.xalancbmk 20.43% 1.74% 1.14% 0.60% 

Avg 17.65% 7.44% 6.74% 0.70% 

FP     

410.bwaves 0.74% 2.80% 2.80% 0.00% 

416.gamess 7.62% 9.47% 8.88% 0.59% 

433.milc 2.67% 0.44% 0.44% 0.00% 

434.zeusmp 2.06% 4.24% 4.24% 0.00% 

435.gromacs 3.65% 8.77% 8.76% 0.01% 

436.cactusADM 0.24% 2.14% 1.10% 1.03% 

437.leslie3d 1.42% 2.28% 2.28% 0.00% 

454.calculix 4.21% 6.12% 5.93% 0.19% 

459.GemsFDTD 1.88% 2.82% 2.80% 0.02% 

465.tonto 5.88% 9.79% 8.75% 1.04% 

470.lbm 1.47% 0.90% 0.90% 0.00% 

481.wrf 4.11% 4.29% 4.26% 0.03% 

482.sphinx3 7.53% 10.73% 10.71% 0.02% 

Avg 3.34% 4.98% 4.76% 0.23% 

FP – C++     

 444.namd 5.24% 6.98% 6.97% 0.01% 

447.dealII 14.68% 8.14% 7.54% 0.59% 

450.soplex 14.91% 6.37% 6.27% 0.10% 

453.povray 11.74% 6.21% 4.96% 1.25% 

Avg 11.64% 6.92% 6.44% 0.49% 

Table A-1: misprediction characteristics of SPEC CPU 2006 on P5+ 

 

 


