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Abstract  
  

 This paper describes a framework, BenchMaker, for 

constructing parameterized, scalable, synthetic benchmarks 

from a set of hardware-independent program characteristics.  

We show that with a suitable choice of a few inherent 

program characteristics related to the instruction mix, 

instruction-level parallelism, control flow behavior, and 

memory access patterns, it is possible to generate a synthetic 

benchmark whose performance directly relates to that of a 

real-world application.  The parameterized nature of this 

framework enables the construction of synthetic benchmarks 

that allow researchers to explore a wider range of the 

application behavior space, even when no benchmarks yet 

exist. We evaluate the applicability and the usefulness of 

BenchMaker for studying the impact of program 

characteristics on performance and how they interact with 

processor microarchitecture.  

 

1. Introduction 
 Estimating and comparing the performance of 

computer systems has always been a challenging task faced 

by computer architects and researchers.  One of the classic 

and most popular techniques to measure the performance of a 

computer system is to characterize its behavior when 

executing a representative workload.  Typically, the 

representative workload is a benchmark program or a set of 

benchmark programs that is believed to be representative of 

typical applications that could be executed on the computer 

system.  Since the early days of computer development, 

benchmark programs have evolved from simple hand-coded 

synthetic benchmarks, such as Whetstone [CURN76] and 

Dhrystone [WEIC84], to standardized benchmark suites such 

as SPEC CPU, SPECjbb, EEMBC, TPC, etc.   

 Although the advent of standardized benchmark 

suites has streamlined the process of performance comparison 

between different computer systems, architects and 

researchers face several challenges when using benchmarks in 

industry product development and academic research: 

 

� Benchmarks only represent a sample of the application 

behavior space – The application programs that are being 

run on computer systems constantly evolve, and given the 

diversity of these application domains, benchmark 

programs only represent a sample of the performance 

spectrum.  There may be several application characteristics 

for which standardized benchmarks do not exist.  This 

makes it difficult to project the processor performance for 

such applications.    

 

� Benchmarks are rigid and measure performance at a 

single-point – A benchmark typically measures the 

performance of a computer system for a set of workload 

characteristics.   This may make it difficult to get statistical 

confidence in the evaluation.  Typically, it is not easy to 

vary the benchmark characteristics to understand whether a 

performance anomaly is an artifact of the benchmark or a 

characteristic of the underlying system.  Moreover, the 

rigid nature of benchmarks makes it difficult to isolate and 

study the effect of individual workload characteristics on 

performance.  

 

� Benchmark suites are costly to develop, maintain, and 

upgrade – Typically, architects and researchers use 

prevailing benchmarks to make processor design decisions.  

However, it is known that as emerging applications evolve, 

benchmark characteristics drift with time and an optimal 

design using benchmarks of today may not be optimal for 

applications of tomorrow.  This problem has been aptly 

described as: “Designing tomorrow’s microprocessors 

using today’s benchmarks built from yesterday’s 

programs” [WEIC97] [YI06].  Therefore, it is important 

for architects and researchers to analyze the effect of 

workload behavior drift on microprocessor performance.  

However, developing new benchmark suites and upgrading 

existing benchmark suites is extremely time-consuming 

and by consequence very costly.  Therefore, it is not 

possible for the benchmark development process to keep 

pace with the rate at which new applications emerge.  

 

� Benchmarks that are standardized are open-source where 

as applications of interest are typically proprietary – 

Being able to run benchmarks on a variety of platforms 

requires that these benchmarks can be compiled to each of 

these platforms. As a result, industry-standard benchmarks 

such as SPEC CPU are typically open-source benchmarks 

that are easily portable across platforms. However, they 

may not be representative for the applications of interest. 

One solution to this problem would be to use the 

applications of interest as benchmarks. Unfortunately, in 

many cases, applications of interest cannot be distributed 

to third parties because of their proprietary nature. 

 



 One of the approaches for addressing these 

challenges is to complement application benchmark suites 

with synthetic benchmarks. An approach to automatically 

generate synthetic benchmarks can help in: (1) constructing 

synthetic benchmarks to represent application characteristics 

for which benchmarks do not (yet) exist, (2) isolating 

individual program characteristics into microbenchmarks, (3) 

altering hard-to-vary benchmark characteristics, and (4) 

serving as proxies for proprietary applications of interest.   

The aim of this paper is to propose a framework, called 

BenchMaker, for constructing such synthetic benchmarks 

whose code properties can be easily altered.   

 Recently, the computer architecture research 

community has recognized the need for rigorous benchmark 

generation techniques [SKAD03] and expended some effort 

in developing synthetic benchmarks that can mimic the 

behavior of real world applications. The primary motivation 

of recent research work in developing synthetic benchmarks 

has been to reduce simulation time of longer-running 

benchmarks and to enable sharing of proprietary applications 

as benchmarks.  The central idea of these proposed 

techniques is to replicate detailed workload characteristics of 

a real world application into a synthetic trace [OSKI00] 

[NUSS01] [EECK04], or a synthetic benchmark program 

[BELL05] [JOSH06].   

 However, each of these approaches has at least one 

shortcoming that limits its ability to study the application 

behavior space by varying program characteristics.  Firstly,  

in most of these approaches [NUSS01] [EECK04] [BELL05] 

[JOSH06], an application is characterized using detailed 

workload characteristics – a statistical flow graph captures the 

control flow behavior of a program and characteristics such 

as instruction mix, register dependency distribution, control 

flow predictability, and memory access pattern – that are 

measured at the granularity of a basic block. This involves 

specifying a large number of probabilities to describe a 

workload, which is highly impractical when using these 

frameworks for exploring workload behavior spaces by 

varying workload characteristics.  Secondly, although some 

of the approaches for generating synthetic workloads 

[OSKI00] [EECK01] show that applications can be modeled 

using a limited of number of program characteristics, they use 

a combination of microarchitecture-dependent and 

microarchitecture-independent program characteristics.  

Microarchitecture-dependent characteristics, such as branch 

misprediction rate and cache miss rate, do not capture the 

inherent program characteristics and make it difficult to 

explore the entire application behavior space independently 

from the underlying hardware.  Finally, a shortcoming of 

some of these techniques [OSKI00] [NUSS01] [EECK00] is 

that they generate synthetic workload traces, precluding their 

use on real hardware, execution-driven simulators, and RTL 

models. 

 The approach proposed in this paper overcomes 

these shortcomings. Unlike prevailing approaches to 

generating synthetic benchmarks, the BenchMaker framework 

that we propose makes it possible to alter inherent workload 

characteristics of a program by varying a limited number of 

key microarchitecture-independent program characteristics in 

a synthetic benchmark – changing the workload behavior is 

done by simply ‘turning knobs’.  This ability to vary program 

characteristics makes it possible to efficiently explore the 

application behavior space.  Specifically, we make the 

following contributions in this paper: 

1) We show that it is possible to fully characterize a 

workload with just a few microarchitecture-independent 

workload characteristics.  This is much more efficient 

than the collection of distributions that need to be 

specified in prevailing workload synthesis techniques. In 

addition, unlike previous approaches, the use of 

microarchitecture-independent characteristics makes it 

possible to explore the entire application behavior space. 

2) We implement this approach into a framework, called 

BenchMaker, which is parameterized to generate synthetic 

benchmarks.  The generation of synthetic benchmarks 

instead of traces makes it possible to use these 

parameterized synthetic workloads on real hardware, 

execution-driven architectural simulators and low-level 

cycle-accurate RTL simulators.    

3) We evaluate the usefulness of the BenchMaker framework 

by demonstrating its applicability to three different areas: 

(a) Studying the effect of inherent workload 

characteristics on performance, (b) Studying the 

interaction of microarchitecture-independent workload 

characteristics with the microarchitecture features of a 

processor, and (c) Accounting for workload drift during 

microprocessor design.  

 

 The remainder of this paper is structured as follows.  

In Section 2, we provide an overview of the proposed 

technique for constructing synthetic benchmarks from 

program characteristics and describe features of the 

BenchMaker framework that we propose in this paper.  In 

Section 3, we describe our simulation environment, machine 

configuration, and the benchmarks used to evaluate the 

BenchMaker framework.  In Section 4, we evaluate the 

BenchMaker framework by demonstrating how it can be used 

to generate synthetic benchmarks that exhibit similar behavior 

to SPEC CPU2000 Integer benchmarks.  In Section 5, we 

demonstrate the application of the BenchMaker framework to 

three challenging problems.  In Section 6, we summarize 

related research work and prior art.  Finally, in Section 7, we 

conclude with the key results from this paper.     

 

2. BenchMaker Framework 
 Figure 1 illustrates the approach used by the 

BenchMaker framework that we propose in this paper for 

generating synthetic benchmarks from a set of 

microarchitecture-independent program characteristics.  The 

program characteristics measure the inherent properties of the 

program that are independent from the underlying hardware.  

Collectively, these characteristics form an abstract workload 

model.  This abstract workload model serves as input to the 



synthetic benchmark generator.  Our intention is to develop a 

workload model that is simple yet accurate enough for 

predicting performance trends across the workload space.   

Keeping the workload model simple makes it possible to not 

only accurately model the characteristics of an existing 

workload into a synthetic benchmark, but also provides the 

ability to conduct ‘what-if’ studies by varying program 

characteristics.  In the following sections we describe the 

workload characteristics that serve as input to the synthetic 

workload generator and we also describe the algorithm used 

for modeling these characteristics into a synthetic workload.   

 

 

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R6

STORE R3, R10, R20

ADD R1, R2,R3

LD R4, R1, R6

MUL R3, R6, R7 

ADD R3, R2, R5

DIV R10, R2, R1

SUB R3, R5, R1

BEQ R3, R6, LOOP

SUB R3, R5, R6

STORE R3, R10, R20

DIV R10, R2, R1

………….

 
 
Figure 1. The BenchMaker framework for constructing 
synthetic benchmarks.  

 

2.1 Workload Characteristics 
 The characteristics that we propose to drive the 

benchmark synthesis process are a subset of all the 

microarchitecture-independent characteristics that can be 

modeled.  However, we believe that our abstract workload 

model captures (most of) the important program 

characteristics that potentially impact a program’s 

performance; the results from the evaluation of the synthetic 

benchmarks in this paper in fact show that this is the case, at 

least for the benchmarks that we used. 

Recall that the key goal of this paper is to show that 

it is possible to maintain good representativeness and good 

accuracy with a limited number of key workload 

characteristics. For limiting the number of program 

characteristics, we capture them at a coarse granularity using 

average statistics over the entire program. This is in contrast 

to prior work on synthetic benchmark generation [BELL05] 

[JOSH06] which models program characteristics at a fine 

granularity by capturing program characteristics at the basic 

block level. Although measuring program characteristics at a 

coarse granularity likely reduces the representativeness of the 

synthetic benchmarks compared to fine grained 

characteristics, this is key to enable the flexibility in 

BenchMaker for generating benchmarks with characteristics 

of interest.  This will enable one to easily vary workload 

characteristics by ‘turning knobs’ and make it possible to 

answer ‘what-if’ questions. We propose to measure the 

following workload characteristics at the program level.   

Instruction Mix.  The instruction mix of a program 

measures the relative frequency of various operations 

performed in the program; namely the percentage of integer 

small latency, integer long latency, floating-point small 

latency, floating-point long latency, integer load, integer 

store, floating-point load, floating-point store, and branches 

in the dynamic instruction stream of a program.   

Basic Block Size.  A basic block is a section of code with 

one entry and one exit point. We measure the basic block size 

as the average number of instructions between two 

consecutive branches in the dynamic instruction stream of a 

program.  We assume that the basic block sizes in the 

program have a normal distribution, and characterize them in 

terms of the average and standard deviation in the basic block 

size distribution of a program.   

Instruction Level Parallelism.  The dependency distance 

is defined as the number of instructions in the dynamic 

instruction stream between the production (write) and 

consumption (read) of a register and/or memory location.  

The goal of characterizing the data dependency distances is to 

capture a program’s inherent ILP.  We measure the data 

dependency distance information on a per instruction basis 

and summarize it as a cumulative distribution organized in 

eight buckets: percentages of dependencies that have a 

dependency distance of 1 instruction, and the percentage of 

dependency dependencies that have a distance of up to 2, 4, 

6, 8, 16, 32, and greater than 32 instructions.  Longer 

dependency distances permit more overlap of instructions in a 

superscalar out-of-order processor.  

Data Footprint.  We measure the data footprint of a 

program in terms of the total number of unique data addresses 

referenced by the program.  The data footprint of a program 

gives an idea of whether the data set fits into the level-1 or 

level-2 caches.   

Data Stream Strides. The principle of data locality is well 

known and recognized for its importance in determining an 

application’s performance.  Instead of quantifying temporal 

and spatial locality by a single number or a simple 

distribution, our approach for measuring the data locality of a 

program is to identify the streams (regular sequences of 

arithmetic progressions) in a program, their length, and how 

they intermingle with each other.  Once these stream 

attributes have been correctly identified and instantiated into 

the synthetic benchmark clone, the resulting program should 



show similar inherent temporal and spatial locality 

characteristics [SORE02].   

 One may not be able to easily identify such stride 

sequences when observing the global data access stream of 

the program.  This is because several streams co-exist in the 

program and are generally interleaved with each other.  In 

order to identify the streams and their related attributes, we 

profile every static load and store instruction to identify the 

stride with which it accesses data.  This is based on the 

observation [JOSH06] that the memory access pattern 

appears more regularly when viewed at a finer granularity of 

static load/store instructions than at a coarser granularity of 

the global access stream. 

In order to capture the data access pattern of a 

program we measure a distribution of local strides in the 

program.  The local stride value is the difference between two 

consecutive effective addresses generated by the same static 

load or store instruction.  We measure the local strides in 

terms of 32-byte block sizes (analogous to a cache line size), 

i.e., if a local stride is between 0 or 31 bytes, it is classified as 

stride 0 (consecutive addresses are within one cache line 

distance), between 32 and 63 bytes as stride 1, etc.  We 

summarize the local stride distance for the entire program as a 

histogram showing the percentage of memory access 

instructions with stride value of 0, 1, 2, etc.  Figure 2 shows 

the distribution of the data stride values for the SPEC 

CPU2000 integer programs.  From this figure we observe that 

for the bzip2, crafty, gzip, and perlbmk benchmarks, 

more than 80% of the local stride references are within a 32-

byte block size, indicating very good spatial data locality.  

The gcc, twolf, and vortex benchmarks only have 60% 

of local stride values that are within a 32-byte block size, and 

exhibit moderate spatial data locality.  The vpr benchmark 

shows two extremes, with approximately 50% of local strides 

accessing the same 32-byte block, and the other 50% with 

extremely large local stride values, indicating a mix of 

references with extremely poor and extremely high spatial 

locality.  The mcf benchmark is an outlier and has very poor 

data locality, with most of the local stride values being 

extremely large.    
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Figure 2.Percentage breakdown of local stride values. 

 

 The combination of data footprint and the stride 

value distribution captures the inherent data locality in the 

program.  These two characteristics are typically very 

difficult to modify in standard benchmarks.  In synthetic 

benchmarks it is easy to fix one of these parameters and study 

the effect of the other. For example, using BenchMaker, we 

can easily study the impact of changing stride values while 

keeping the data footprint the same. Or, if of interest, one can 

explore the combined effect of varying footprint and access 

patterns. 

Instruction Footprint. We characterize the instruction 

footprint as the total number of unique instructions referenced 

by the program.  The instruction footprint of a program gives 

an idea of whether the data set fits into the level-1 or level-2 

caches.  The instruction footprints of all the programs that we 

studied are very small (gcc has the largest instruction 

footprint) and do not stress the instruction cache.   

Branch Transition Rate.  In order to capture the inherent 

branch behavior in a program, the most popular 

microarchitecture-independent metric is to measure the 

percentage of taken branches in the program or the taken rate 

for a static branch, i.e., fraction of the times that a static 

branch was taken during the complete run of the program.  

Branches that have a very high or low taken rate are biased 

towards one direction and are considered to be highly 

predictable.  However, merely using the taken rate of 

branches is insufficient to actually capture the inherent branch 

behavior.  The predictability of the branch depends more on 

the sequence of taken and not-taken directions than just the 

taken rate. 
 Therefore, in our control flow predictability model 

we also measure an attribute called transition rate, due to 

[HAUN00], for capturing the branch behavior in programs.  

Transition rate of a static branch is defined as the number of 

times it switches between taken and not-taken directions as it 

is executed, divided by the total number of times that it is 

executed.   By definition, the branches with low transition 

rates are always biased towards either taken or not-taken.  It 

has been well observed that such branches are easy to predict.  



Also, the branches with a very high transition rate always 

toggle between taken and not-taken directions and are also 

highly predictable.  However, branches that transition 

between taken and not-taken sequences at a moderate rate are 

relatively more difficult to predict.  In order to incorporate 

synthetic branch predictability we measure a distribution of 

the transition rate of all static branches in the program.  When 

generating the synthetic benchmark clone we ensure that the 

distribution of the transition rates for static branches in the 

synthetic stream of instructions is similar to that of the 

original program.  We achieve this by configuring each basic 

block in the synthetic stream of instructions to alternate 

between taken and not-taken directions, such that the branch 

exhibits the desired transition rate.    

Summary. To summarize the above discussion, the abstract 

model characterizing a workload consists of 40 numbers in 

total, as shown in Table 1. Collecting only 40 workload 

statistics results in a much more compact representation of a 

workload; compared to the previous benchmark synthesis 

approaches [BELL05][JOSH06], where most of these 

statistics are separately measured for every basic block 

resulting in typically several thousands of numbers to 

characterize a workload.  Consequently, the BenchMaker 

framework has 40 ‘knobs’ that can be controlled to efficiently 

explore the application behavior space. 

 
Table 1. Microarchitecture-independent characteristics that 
form an abstract workload model. 

 
Category Num. Characteristic 

instruction 

mix 

8 percentage of integer short latency 

percentage of integer long latency 

percentage of floating-point short latency 

percentage of floating-point long latency 

percentage of integer load 

percentage of integer store 

percentage of floating-point load 

percentage of floating-point store 

instruction 

level 

parallelism 

8 

 

 

register-dependency-distance – 8 distributions 

for register dependencies. Register dependency 

distance equal to 1 instruction, and the 

percentage of dependency dependencies that 

have a distance of up to 2, 4, 6, 8, 16, 32, and 

greater than 32 instructions. 

data locality 1 

10 

data footprint 

distribution of local stride values 

instruction 

locality 

1 instruction footprint 

branch 

predictability 

10 

2 

distribution of branch transition rate 

average and std. dev in basic block size 

 

2.2  Synthetic Benchmark Construction 
We now describe the algorithm that is used to generate a 

synthetic benchmark from the abstract workload model. The 

synthetic benchmark generator constructs a synthetic 

benchmark by modeling all the microarchitecture-

independent workload characteristics described in the 

previous section into a synthetic clone.  The basic structure of 

the algorithm used to generate the synthetic benchmark 

program is similar to the one proposed by [Bell05].  

However, the memory and branching model is replaced with a 

microarchitecture-independent model, as described later in 

this section.  The clone generation process comprises of five 

sub steps – generating the synthetic program spine using 

instruction mix and basic block analysis, incorporating 

memory accessing pattern modeling, modeling branch 

predictability, register assignment, and code generation.    

 

2.2.1   Generating Program Spine 
 A normal distribution function based on the average 

basic block size and its standard deviation is used to generate 

a linear chain of basic blocks.  This linear chain of basic 

blocks forms the spine of the synthetic benchmark program.  

We use the maximum instruction footprint of the program as 

a guideline to decide the length of the spine for each program.  

The chain of basic blocks can be made arbitrarily long in 

order to generate a large footprint that will stress the 

instruction cache.  After the spine has been instantiated, each 

basic block is populated using the instruction mix 

characteristics. Also, each operand in each instruction is 

assigned a value based on the dependency distance 

distribution.  This is used in a later stage when register 

assignment is being performed.   
 

2.2.2 Modeling Memory Access Pattern 
For each memory access instruction in the synthetic 

benchmark we assign a stride value from the stride 

distribution function.  The load or store instruction is 

modeled as a bounded stream of circular references, i.e., each 

memory access walks through an entire array using the stride 

value assigned to it and then restarts from the first element of 

the array.  The length of each array is simply the ratio of the 

data footprint of the program and the total number of static 

load or store instructions in the program.  This makes it 

possible to easily alter the data footprint of the program while 

maintaining the same stride distribution.   Since the maximum 

number of unique stride values in the program is restricted to 

10, we do not need a large number of registers to store the 

stride values. 

 

2.2.3 Modeling Branch Predictability 
For each static branch in the spine of the program we 

assign a transition rate based on the specified transition rate 

distribution.  We achieve this by configuring each basic block 

in the synthetic stream of instructions to alternate between 

taken and not-taken directions, such that the branch exhibits 

the desired transition rate.  A counter is incremented on each 

iteration count and a modular operation is used to decide 

whether the branch is taken or not-taken.  

 

2.2.4 Register Assignment 
In this step we use the dependency distances that 

were assigned to each instruction to assign registers.  The 

number of registers that are used to satisfy the dependency 

distances is typically kept to a small value (typically around 



10) to prevent the compiler from generating stack operations 

that store and restore the values.   

 

2.2.5 Code Generation 
During the code generation phase the instructions 

are emitted out with a header and footer.  The header contains 

initialization code that allocates memory using the malloc 

library call (for modeling the memory access patterns) and 

assigns memory stride values to variables.  Each instruction is 

then emitted out with assembly code using asm statements 

embedded in C code.  The instructions are targeted towards a 

specific ISA, Alpha in our case.  However, the code generator 

can be modified to emit instructions for an ISA of interest.  

The volatile directive is used to prevent the compiler from 

reordering the sequence of instructions and changing the 

dependency distances between instructions in the program.  

The entire program is executed in a loop whose value can be 

controlled to control the dynamic instruction count of the 

program.  This value is tuned to ensure that the synthetic 

clone’s performance, cycles per instruction (CPI), converges 

to a stable value.  

 

3. Experiment Setup 
 In all of our experiments we use the sim-alpha 

simulator [DESI01] from the SimpleScalar Tool Set 

[BURG97].  The sim-alpha simulator is an execution 

driven performance model that has been validated against the 

superscalar out-of-order Alpha 21264 processor.  In order to 

measure the abstract workload characteristics of a program 

we used a modified version of the sim-safe simulator. 

 
Table 2. SPEC CPU programs, input sets, and simulation 
points used in study. 

 

Benchmark Input SimPoint(s) 

SPEC CPU2000 Integer 
bzip2  graphic 553 
crafty ref 774 
Eon rushmeier 403 
Gcc 166.i 389 
gzip graphic 389 
Mcf ref 553 
perlbmk perfect-ref 5 
twolf ref 1066 
vortex lendian1 271 
vpr route 476 
gcc expr 8, 24, 47, 51, 56, 73, 87, 99 

SPEC CPU95 Integer 

gcc expr 0, 3,5,6,7,8,9,10,12 

 

In our experiments we use the integer benchmarks 

from the SPEC CPU2000 benchmark suite.  In most of our 

experiments we use one 100M-instruction simulation point 

selected using SimPoint [SHER02].  However, when 

comparing programs from two generations of SPEC CPU 

benchmark suites we use multiple simulation points.  All the 

SPEC CPU2000 Integer benchmark programs were compiled 

on an Alpha machine using the native Compaq cc v6.3-025 

compiler with –O3 compiler optimization.  The SPEC CPU95 

benchmark program, gcc, was compiled using a native circa 

1995 compiler, gcc 2.6.3. Table 2 summarizes the 

benchmarks and the simulation points that were used in this 

study.  

 

4. Evaluation of BenchMaker Framework 
 In this section we evaluate the accuracy of the 

BenchMaker framework by using it to generate synthetic 

benchmark programs that show similar characteristics as the 

SPEC CPU2000 benchmark programs.  We measure the 

workload characteristics of the SPEC CPU2000 benchmarks 

and feed this abstract workload model to the BenchMaker 

framework.  

Figure 3 evaluates the accuracy of BenchMaker for 

estimating the pipeline instruction throughput measured in 

instructions-per-cycle (IPC): this is done by comparing the 

IPC for the actual benchmark compared to the IPC for the 

synthetic benchmark. We observe that the synthetic 

benchmark performance numbers tracks the real benchmark 

performance numbers very well. The average IPC prediction 

error is 14% and the maximum error is observed for mcf 

(19.9%).  
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Figure 3.  Comparison of Instructions-Per-Cycle (IPC) of the 
actual benchmark and its synthetic version. 
 

Figure 4 shows similar results for the L1 D-cache 

performance: the number of L1 D-cache misses per one 

thousand instructions is shown on the vertical axis for the 

various benchmarks. Again, the synthetic benchmark numbers 

track the real benchmark numbers very well. The maximum 

error in predicting the number of L1 cache misses-per-1K 

instructions is observed for mcf for which the difference 

between the real and the synthetic benchmark is 9 misses-per-

1K-instructions (or less than 4% in relative terms).  We 

obtain similar results for the L2 cache performance. All of the 

benchmarks except for mcf and vpr have a negligibly 

small miss rate at the L2 cache level; mcf shows 120 L2 

misses-per-1K-instructions, and vpr shows 8 L2 misses-per-



1K instructions. The synthetic benchmark accurately tracks 

this trend, and shows 114 and 5 L2 misses-per-1K 

instructions respectively for mcf and vpr benchmarks.  

Also, the L1 instruction cache miss rate is negligible for all 

programs, with gcc having the highest miss rate of 1.3%. 

Figure 5 evaluates the accuracy of BenchMaker for 

replicating the branch behavior of a real benchmark into a 

synthetic benchmark. Here again, we observe that the 

synthetic versions of the benchmark track the real benchmark 

numbers very well. One particularity to note here is that the 

branch prediction rates are always higher for the synthetic 

benchmarks than for the real benchmarks. This suggests that 

some of the difficult-to-predict branch sequences in the 

program are not captured in the synthetic benchmark.  The 

branches in the synthetic benchmark tend to be relatively 

easier to predict than is the case for the original benchmark. 
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Figure 4.  Comparison of the number of L1 D-cache misses-
per-1K-instructions for the actual benchmark and its synthetic 
version.  
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Figure 5.    Comparison of the branch prediction rate for the 
actual benchmark and its synthetic version. 

 

5. Applications of BenchMaker Framework 

 

5.1 Program Behavior Studies  
 In order to demonstrate the usefulness of the 

BenchMaker framework we show how it can be applied for 

studying workload behavior and its interaction with the 

microarchitecture.  It is extremely difficult to conduct 

comparable ‘what-if’ studies using a set of standardized 

benchmarks because their characteristics form an essential 

part of the benchmark application and cannot be easily 

altered.  On the contrary, using BenchMaker, it is possible to 

easily generate a benchmark program from a limited list of 

characteristics.  

 We generate a synthetic benchmark using the 

average of all the characteristics across the SPEC CPU 

Integer benchmark programs.  The synthetic benchmark, 

AvgSynBench, modeling the average characteristics shows a 

pipeline throughput of 1.1 IPC on the Alpha 21264 processor.  

In our study we use the characteristics of this benchmark as 

our baseline characteristics and alter them to study the effect 

of each program characteristic on performance, their 

interaction with each other, and their interaction with the 

microarchitecture. 

 

5.1.1 Impact of Individual Program 

Characteristics  on Performance 
 In this section we use BenchMaker to study the 

impact of data locality and control flow predictability by 

varying memory access patterns and branch transition rates, 

respectively.   

 Figure 6 shows how the change in percentage of 

references with zero strides (subsequent executions of the 

same static memory operations access memory within a 32-

byte block size) affects IPC and L1 D-cache miss rate.  We 

observe that as the percentage of references with zero stride 

varies from 0 (no accesses to the same cache line) to 100 (all 

executions of the same static memory operation access the 

same cache line), the IPC of the program linearly increases.  

Interestingly, the drop in L1 data cache miss rate is also linear 

with the increase in percentage of references with stride value 

0.  This suggests that if all other characteristics remain 

constant, the L1 data cache miss rate and IPC have an almost 

perfect negative linear correlation (-0.99).  

 Next we study how the branch transition rate affects 

performance.  Recall, that the branch transition rate of a 

program is measured as a distribution.  We experimented with 

a number of random combinations of distribution of transition 

rates.  We observed that with these random combinations, the 

branch prediction rate varies between 0.99 and 0.82, and 

correspondingly the variation in IPC was a factor of 1.61 

(61% dip in performance if branch prediction rate falls to 

0.82).  
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(a) Impact on IPC of the percentage of references with 

zero stride value 
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(b) Impact on L1 D-cache miss rate of the percentage of 

references with zero stride value 
Figure 6. Studying the impact of data spatial locality by 
varying the local stride pattern. 
 

 Based on these studies we can conclude that the 

BenchMaker framework is a useful tool for isolating and 

studying the behavior of individual program characteristics 

and their impact on performance. 

 

5.1.2   Interaction of Program Characteristics  
 In our abstract workload model we characterize the 

data locality of a program by measuring its data footprint 

(which is an indicator for temporal locality) and the 

distribution of local stride pattern (which is an indicator for 

spatial locality).     
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Figure 7. Interaction of local stride distribution and data 
footprint program characteristics. 
 

 In this section we analyze how the local stride 

distribution pattern and the data footprint of a program 

interact with each other.  Figure 7 shows the effect of changes 

in percentage of references with zero strides for three 

different data footprints.  From this graph we observe that for 

larger footprints, we see a steeper fall in L1 D-cache miss rate 

as the percentage of references with stride value 0 increases.  

For the case where 100% of the references access the same 

cache line, the footprint does not seem to have an impact on 

the L1 D-cache miss rate. 

 

5.1.3 Interaction of Program Characteristics 

with Microarchitecture 
 A benchmark synthesis framework is not only useful 

for isolating and studying the impact of program 

characteristics on performance, but is also an invaluable tool 

to understand how program characteristics interact with 

microarchitectural structures. For example, BenchMaker can 

be used to find a combination of program characteristics that 

interact poorly with a given microarchitecture. More in 

particular, automatically generating benchmarks that ‘stress’ 

the microarchitecture can give insight into critical program-

microarchitecture interactions. The ‘stress’ benchmarks can 

help in exposing performance anomalies and understanding 

the limitations of a given microarchitecture.  

  As an example, in order to find a benchmark that 

stresses the branch predictor, we generated a number of 

synthetic benchmarks that contain randomly generated 

distributions of transition rates.  Interestingly, the transition 

rate distribution that resulted in the lowest prediction rate was 

the case where 100% of the branches have a transition rate 

between 90% and 100%.  In this configuration, every branch 

in the synthetic benchmark continuously toggles between 

taken and not-taken directions.  This sequence of branches 

heavily stresses the Alpha 21264 branch predictor (which is a 

tournament branch predictor that chooses between local and 

global history to predict the direction of a given branch): it 

achieves a branch prediction rate of only 0.82. Similarly, this 

approach can be extended to stress-test different 

microarchitectural structures for performance, power, energy 

and temperature studies, see [JOSH08].  

 

5.2.   Workload Drift Studies  
 Research work [YI06] has shown that it is important 

to account for the potential impact of workload drift when 

designing a microprocessor.  This section demonstrates how 

BenchMaker can be used to study workload drift. 

 

5.2.1 Analyzing the impact of benchmark drift   
 As a first case study, we use the gcc benchmark 

with the expr input set from the SPEC CPU95 and SPEC 

CPU00 benchmark suites.  The gcc-expr95 benchmark 

shows an IPC throughput of 1.54 on the Alpha 21264; gcc-

expr00 shows an IPC throughput of 1.11.   This clearly 

shows that a new release of the same application program 

(with the same input) can result in significant performance 



degradation (36% degradation in the case of gcc). To 

understand this behavior, we now compare the abstract 

workload model for gcc-expr95 and gcc-expr00.  Most 

of the program characteristics are more or less the same 

across the two gcc versions. Even the local stride values 

(indicative of spatial locality) exhibit a similar distribution. 

However, the data footprint (indicative of temporal locality) 

appears to have increased by a factor of 3. Based on this 

observation, we constructed a synthetic benchmark with the 

same characteristics as   gcc-expr95 but with three times 

its data footprint.  This benchmark shows an IPC throughput 

of 1.19 (an error of only 7.2% compared to IPC of gcc-
expr00).  

  This result demonstrates that BenchMaker can be a 

useful tool to generate futuristic workloads in the anticipation 

of changes in program characteristics, and can help in 

projecting the impact of workload drift on performance. 

 

5.2.2 Analyzing the impact of code size increase 
 Previous characterization studies [PHAN05] have 

pointed out that although the dynamic instruction count has 

increased by a factor 100 over the four generations of SPEC 

CPU benchmark suites, the static instruction count of the 

programs has not significantly grown. However, in general, 

the static instruction count of any commercial software 

application tends to increase with every generation as the 

application evolves with the advent of new features and 

functionality.  The absence of any benchmarks that stress the 

instruction cache makes it difficult to analyze the 

performance impact of an application that could result from 

code footprints that are substantially larger than available 

benchmarks. To illustrate the application of BenchMaker 

to study the impact of potential increase in code size on 

program performance, we use the AvgSynBench benchmark 

and vary its code footprint. Figure 8 shows different flavors 

of the AvgSynBench benchmark with varying instruction 

footprints to stress the instruction cache. The graph shows 

that increases in code size can have a significant impact on 

performance and must be taken into account if application 

code size is expected to increase.
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Figure 8.  Effect of increasing instruction footprint on 

program performance.  

 As such, we can conclude that in the absence of any 

SPEC CPU benchmarks that stress the instruction cache, this 

is a plausible approach to project the impact of I-cache misses 

on the performance of an application. 

 

6. Related Work 
  [OSKI00] [EECK00] [NUSSB00] introduced the 

idea of statistical simulation. The approach used in statistical 

simulation is to generate a short synthetic trace from a 

statistical profile of workload attributes such as basic block 

size distribution, branch misprediction rate, data/instruction 

cache miss rate, instruction mix, dependency distances, etc., 

and then simulate the synthetic trace using a statistical 

simulator.  [EECK04] improved statistical simulation by 

profiling the workload attributes at a basic block granularity 

using statistical flow graphs.  Recent improvements include 

more accurate and detailed memory data flow modeling for 

statistical simulation [GENB06].  In comparison, the 

objective of this paper is to keep the workload model simple 

and yet accurate enough to explore the application behavior 

space.  

  [BELL05] extended the concept of statistical 

simulation for the automatic synthesis of miniature 

benchmarks from actual application executables.  The key 

idea of this technique is to capture the essential structure of a 

program using statistical simulation theory, and generate C-

code with assembly instructions that accurately model the 

workload attributes, similar to the framework proposed in this 

paper.  [JOSH06] improved the usefulness of this workload 

synthesis technique by developing microarchitecture-

independent models to capture locality and control flow 

predictability of a program into synthetic workloads.  

However, similar to statistical simulation, these techniques 

characterize a program at a fine granularity and make it 

impractical to easily change program characteristics.     

 [EECK01][OSKI00] showed that using a 

combination of analytical and statistical modeling, it is 

possible to efficiently explore the workload and 

microprocessor design space.  However, this technique uses a 

combination of microarchitecture-independent and 

microarchitecture-dependent workload characteristics – 

limiting the application behavior space that can be explored.  

The approach proposed in this paper overcomes this 

shortcoming that it is possible to characterize a workload 

using only a few microarchitecture-independent workload 

characteristics – enabling exploration of a wider application 

behavior space. Also, the construction of synthetic 

benchmarks instead of synthetic traces makes it possible to 

run the synthetic benchmark on real hardware and execution-

driven simulators.  

 Several approaches [FERR84] [CURN76] 

[SREE74] have been proposed to construct a synthetic drive 

workload that is representative of a real workload under a 

multiprogramming system.  In these techniques, the 

characteristics of the real workload are obtained from the 

system accounting data, and a synthetic set of jobs are 

constructed that places similar demands on the system 

resources.   There has been a lot of research on developing 

microarchitecture-independent locality and ILP metrics. For 



example, locality models researched in the past include 

working set models, least recently used stack models, 

independent reference models, temporal density functions, 

spatial density functions, memory reuse distance, locality 

space, etc., see for example [CONT90] [DENN68] [SEZN00] 

[SPIR72][CHAN2005].  Generic measures of parallelism 

based on the dependency distance in a program have been 

used by [NOON94] and [DUBE94]. 

 

7. Conclusions 
 The objective of this paper was to develop a 

framework that can be used to construct parameterized 

synthetic benchmarks.  One of the key results from this paper 

is that it is possible to fully characterize a workload by only 

using a limited number of microarchitecture-independent 

program characteristics, and still maintain good accuracy.  

Moreover, since these program characteristics are measured 

at a program level they can be measured more efficiently and 

are amenable to parameterization.  We implement this 

approach in a framework called BenchMaker and 

demonstrate various applications that help in studying 

program characteristics that are typically difficult to vary in 

standardized benchmarks.  The need for a scientific approach 

to construct parameterized synthetic benchmarks, to 

complement standardized benchmarks, has long been 

recognized by the computer architecture research community, 

and this work is a significant step towards achieving that goal. 
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