Performance in Virtual Environments Stefan Appel

Analysis of Resource Sharing in Overbooked Virtual Environments

- Virtualization is used heavily nowadays (cloud computing)
- Physical resources are shared between virtual machines
- Are resources shared fairly when virtual resources exceed physical resources?
- CPU: yes, Memory Bandwidth: yes, Disk I/O: it depends

Test Setup

- Hardware
 - IBM x3850 Server
 - 4 x Dual-Core Xeon 7150N 3.5GHz
 - 16GB RAM
 - 6 x 10.000 RPM SAS HD, RAID 10
- Software
 - Host OS: Debian Linux, etch
 - Hypervisor: VMWare Server 2.0
 - Guest OS: Ubuntu Linux, 8.04
- Scenario:
 - 1–7 Virtual Machines (VMs) in parallel

ubuntu®

Testing CPU Performance in Parallel Running VMs

- Benchmark
 - SPECjvm2008 Benchmark Suite
 - I1 Applications / Workloads
 - Composite score & separate scores
- Virtual Machine Setup
 - 2 vCPUs
 - 1024MB RAM
 - 512MB JVM Heap Size
- CPU overbooking with 5+ VMs in parallel (8 cores available)
- SPECjvm2008 started simultaneously in 1-7 VMs

Fair CPU Sharing Between VMs

	Number of Virtual Machines				
	1	4	5	6	7
Average SPECjym2008 Score	14.770	14.060	11.786	9.707	8.094
Standard Deviation	-	0.121	(0.084	0.110	-0.100
Accumulated Score	14.770	\$6.240	58.930	58,240	56.660

- Fair distribution of CPU time among VMs
 - Low standard deviation
- Overhead increases slightly with increasing number of VMs
 - Accumulated score decreases

Different behavior of benchmarks due to amount of parallelism

- I Virtual Machine vs. 4 Virtual Machines
 - No performance difference for some benchmarks: compress, mpegaudio, scimark.small
 - Significant performance difference for other benchmarks: compiler, xml
 - → Different amount of parallelism

SPECjvm2008 Results for Different Numbers of Running VMs

CPU not Fully Utilized During Benchmark Run

- Parts of SPECjvm2008 do not utilize two CPU cores
- 5+ Virtual Machines necessary to fully utilize host system

SPECjvm2008: CPU Idle Percentage over Time, 2 vCPUs, 10sec Measurement Intervals

Testing Memory Throughput in Parallel Running VMs

- Benchmark
 - RAMSPEED: Memory throughput, one thread
 - RAMSMP: Memory throughput, multiple threads
 - COPY (A=B), SCALE (A=m*B), ADD (A=B+C) and TRIAD (A=m*B+C) operations
- Virtual Machine Setup
 - 2 vCPUs, 2048MB RAM
 - Transfer of 8GB of data, 5 runs
- CPU overbooking with 5+ VMs in parallel
- Physical amount of RAM (16GB) sufficient, no swapping
- RAMSPEED/RAMSMP started simultaneously in 1-7 VMs

Full Memory Bandwidth only with 3+ VMs in Parallel

- Max. throughput requires utilization of multiple CPUs
 - Utilization of all memory controllers and caches
- Low overhead in highly utilized system
 - Overall throughput decreases slowly with increasing number of VMs

Ramsmp, 2 Processes per VM: Accumulated Throughput over VMs

Sum Add Sum Copy Sum Scale Sum Triad

Memory Bandwidth is Distributed fairly among VMs

- Hypervisor distributes available memory bandwidth uniformly
 - Low standard deviations when comparing throughput per VM
- Slightly increasing std. dev. with increasing number of VMs
 - Fair distribution of resources more difficult with more VMs

10

Testing IO Performance in Parallel Running VMs

- Benchmark
 - Bonnie++: putc(), write(), write(), read(); Character- and Blockwise
 - Iozone: Write, Re-Write, Read, Random Read; different Blocksizes
- Virtual Machine Setup
 - 2 vCPUs
 - 1024MB RAM
 - 40GB disk, Benchmark file size: 2GB
- Scenarios
 - Bonnie++ and Iozone in 1,3 and 5 VMs in parallel: sufficient CPUs für 3 VMs, sufficient RAM

The Average IO Throughput per VM is Constant

- Repeated Iozone and Bonnie++ runs
 - <u>Average</u> throughput to and from hard disk is constant
 - Different values of Bonnie++ and Iozone due to different mechansims

lozone: Average Throughput, 2 Runs

High Differences in IO Throughput between Runs

- Standard deviation almost always exceed 10%
 - No uniform distribution of IO bandwidth throughout a single run
 - Same for lozone runs with different block sizes and Bonnie++ runs

lozone: Standard Deviation, 2 Runs

VN1 VM2 VM3

Accumulated Throughput Exceeds Throughput of Single VM

- Accumulated throughput (r/w) exceeds single VM throughput
 - Write: Effect small, but can be measured
 - Read: Effect huge, throughput doubled
- Possible explanations:
 - Caching effects, serialization of writes

Throughput Accumulated over all VMs

Summary: CPU ok, Mem ok, IO depends

- CPU sharing works
 - SPECjvm2008 in 1-7 VMs in parallel
- Memory Bandwidth sharing works
 - RAMSPEED/RAMSMP in 1-7 VMs in parallel
- Disk I/O
 - Iozone and Bonnie++ in 1,3 and 5 VMs in parallel
 - Bandwidth shared fairly on average
 - But differences between VMs for single runs
 - Accumulated throughput exceeds single VM throughput

Thank You for Your Attention!

- Questions?
- Comments?

