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!   Cross-platform performance prediction [KKR2008a] for 
systematic engineering of component-based software 
!   Performance in our case: execution duration of component services 

!   Performance prediction e.g. for following scenarios: 
!   Relocation of an application  

to another execution platform  

!   Sizing: choosing appropriate  
execution platform to fulfil  
changed perf. requirements 

Motivation 
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Bytecode-based Performance Prediction 

!   Context of presented work: bytecode-based performance 
prediction [KKR2008a] for existing components: 
!   Performance of a component on other execution platform 
!   Bytecode instructions counts as a performance metric 

 

!   Counting must be performed at runtime, since  
static analysis or symbolic execution not sufficient 

!   Must be applicable to sourceless and legacy components 
 

3. Predict performance: combine counts and benchmark results 
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ByCounter: Runtime Bytecode Instruction 
Counting using Application Instrumentation 

!   ByCounter collects runtime counts of Java bytecode 
instructions and method invocations 

!   Counts different instruction types individually 
!   Configurable parameter recording for array-related instructions 
!   Not constrained by timer accuracies and costs (cf. short methods) 
!   Based on JVM-independent application instrumentation 
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Overview over the ByCounter Process 

Instrument bytecode before execution 

Execute instrumented bytecode 
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Idea and Advantages of ByCounter 

!   Idea: instrument the application, not the virtual machine 
!   Insert counters into existing bytecode, preserve method signatures  

!   Advantages:  
!   Instrumentation transparent to the application:  

no functional side-effects (but: runtime overhead) 
!   Method invocations by the bytecode of the instrumented method: 

configurable and extendable treatment 
!   No dependence on native interfaces, works on any JVM 
!   Idea applicable to Dalvik, CLR etc. 

!   Previous approaches: use modified JVMs or JVMTI etc. 
!   Insufficient portability; not desirable in production environments 
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Example: SOR Part of the Scimark 
Benchmark in SPECjvm2008 

!   No jumps, loops, method invocations or other control flow  
è The number of executed bytecode instructions... 

!   ... is independent of the input parameter values of num_flops 
!   ... is independent of the state of the invocation target 
!   ... can be determined statically 
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Switching to Bytecode Instruction Sequences 

!   Since counting bytecode instructions individually... 
!   ... is costly in terms of runtime overhead (CPU, memory) 
!   ... limits scalability, offers room for improvement 

!   Solution: identify and use performance-invariant 
bytecode instruction sequences (PIBISes) 
!   Decreases amount of inserted instrumentation 
!   Maintains existing precision of counting results 
!   Similar to basic blocks (and dictionaries in data compression) 

!   We extended ByCounter and studied the effects using 
workloads of the SPECjvm2008 benchmark 
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PIBISes: Treatment in ByCounter 

!   PIBISes are not identical to basic blocks: 
!   As with basic blocks: no jumps etc. allowed 
!   Additionally: a PIBIS may not contain instructions  with 

parameter-dependent performance (which can change 
between executions: cf. size parameter of newarray) 

 

!   Extended ByCounter: identifies PIBISes 
!   Instead of 1 counter incrementation for every single 

executed instruction: 1 incrementation per PIBIS exec. 
!   Note that some PIBISes still contain just one instruction 
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Implementation of ByCounter for Java 

!   Analysable, easily modifiable representation  
!   Obtained using ASM framework 

 
!   Insert counting instrumentation into application 

!   Counters are long-typed bytecode local variables 
(invisible outside the instrumented method),  

!   Counters initialised when method execution starts 
!   Each execution of instruction/PIBIS: counter is 

also incremented 
!   Report counters at method exit points (write to a log 

file or report to a central „collector“ daemon) 
 

1. Parse 
program 
bytecode 

2. Instrument  
parsed 

program 
representation 

and run 
resulting 
bytecode  

!   Instrumented .class files: persistable, usable by any ClassLoader 
!   Existing workloads, harnesses, scripts and configurations can be used 
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Preliminary Results 
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!   Durations in seconds 
!   Median values based on 21 

measurements using java. 
lang.System.nanoTime() 

!   Durations include result 
aggregation and storage 

!   JITting takes place (proof:  
-XX:+PrintCompilation 
JVM flag to enable logging) 

Evaluation platform (runs Mac OS X 10.6.4, 64 bit): 
!   2.8 GHz Intel Core 2 Duo, 4 GB of 1067 MHz DDR3 main memory 
!   JVM 1.6.0_20 provided by Apple (default mode, equals –server) 
!   -Xmx768M JVM flag to allocate 768 MB of heap memory 
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Related Work 
!   Concerning SPECjvm98:  

!   [Gregg et al., 2002] modified JVM to benchmarking methods and bytecode 
instructions, no research on counting overhead 

!   [Lambert and Power, 2005] static/dynamic frequencies of basic blocks 
!   [Li et al., 2000] complete system simulation: not addressing bytecode-level 

basic blocks or precise bytecode counts 
!   SPECjvm2008 

!   [Oi, 2009], [Oi, 2010] compared other performance metrics, different JVMs 
!   [Shiv et al., 2009] impact of hardware architecture details on 

SPECjvm2008 performance in comparison to other SPEC benchmarks 
!   JVM-internal basic block analysis for Just-in-Time compilation etc. 

!   Analysis results not available to platform-independent counting tools  
!   Program optimisers, escape analysis and control flow graph analysis of 

basic blocks have different objectives 
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Assumptions and Limitations 

!   Subsequences (i.e. Sub-PIBISes) irrelevant: 
PIBISes should be as large as possible 

!   Bytecode supplied to ByCounter must be „final“ 
!   Complex classloading in application servers: to test 
!   ByCounter works as JVM „instrumentation agent“, too 

 
!   JIT impact to be considered 
!   Further evaluation needed (e.g. SPECjbb2005) 
!   Instrumenting Java Platform API methods: t.b.d. 
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Future Work 

!   Further potential for decreasing runtime overhead 
!   Identify performance-invariant methods:  

no need for result reporting each time (counts constant) 
!   Parallelise evaluation and aggregation of results on 

multi-core execution platforms 
!   Combine with purity analysis  

!   To prevent counting code that otherwise is „dead code“  

!   Study the shape/contents of different PIBISes 
!   Also: their static/dynamic frequency  

!   Compare overhead to JVMTI-based tools 
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Conclusions 

!   Runtime bytecode instruction counts using ByCounter: 
platform-independent dynamic performance metric 
!   Successful usage in cross-platform perf. prediction [KKR2008a] 
!   Uses transparent instrumentation of application bytecode 
!   Neither profilers nor JVM monitoring tools are instruction-precise 

!   New: to decrease overhead in ByCounter: identify and use 
performance-invariant bytecode instruction sequences 

!   Evaluation shows significant overhead decrease, e.g. for 
SPECjvm2008 MPEGaudio: 2.9x lesser runtime overhead 
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