
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

SOFTWARE DESIGN AND QUALITY GROUP
INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

www.kit.edu

Using Invariant Analysis for Improving
Instrumentation-based Performance
Evaluation of SPECjvm2008 Benchmarks

Michael Kuperberg, Martin Krogmann, Ralf Reussner
Karlsruhe Institute of Technology

Software Design and Quality Group
Institute for Program Structures and Data Organization

2 Oct 8th, 2010

!   Cross-platform performance prediction [KKR2008a] for
systematic engineering of component-based software
!   Performance in our case: execution duration of component services

!   Performance prediction e.g. for following scenarios:
!   Relocation of an application

to another execution platform

!   Sizing: choosing appropriate
execution platform to fulfil
changed perf. requirements

Motivation

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Exec. platform 1

A E

Exec. platform 2

A E

Exec. platform 4

?

? Exec. platform 3

F D
Exec. platform 5

Software Design and Quality Group
Institute for Program Structures and Data Organization

3 Oct 8th, 2010

Bytecode-based Performance Prediction

!   Context of presented work: bytecode-based performance
prediction [KKR2008a] for existing components:
!   Performance of a component on other execution platform
!   Bytecode instructions counts as a performance metric

!   Counting must be performed at runtime, since
static analysis or symbolic execution not sufficient

!   Must be applicable to sourceless and legacy components

3. Predict performance: combine counts and benchmark results

1.
Count
bytecode
instructions

I
A
D
D

N
E
W
A
R
R
A
Y

L
M
U
L

D
U
P

2.
Benchmark
bytecode
instructions I

A
D
D

L
M
U
L

D
U
P

N
E
W
A
R
R
A
Y

number of intructions execution duration

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

4 Oct 8th, 2010

ByCounter: Runtime Bytecode Instruction
Counting using Application Instrumentation

!   ByCounter collects runtime counts of Java bytecode
instructions and method invocations

!   Counts different instruction types individually
!   Configurable parameter recording for array-related instructions
!   Not constrained by timer accuracies and costs (cf. short methods)
!   Based on JVM-independent application instrumentation

Kuperberg et al. - Invariant Analysis for Performance Evaluation

...
IINC
meth1()
IMUL
meth2()
ISTORE
LLOAD
LLOAD
...

Bytecode classes
of application

ByCounter Method a():
 ...
 27865*LLOAD
 976*meth1()
 ...
Method b():
 ...

Application Workload Aggregated
instruction

counts

Settings

Software Design and Quality Group
Institute for Program Structures and Data Organization

5 Oct 8th, 2010

Overview over the ByCounter Process

Instrument bytecode before execution

Execute instrumented bytecode

1. Parse
program
bytecode

2. Instrument
parsed program
representation

3. Convert
into
executable
bytecode

4. Create
testbed
if needed
(parameters,
etc.)

5. Replace
original
with instru-
mented
bytecode
classes

6. Run
instrumented
bytecode,
collect
counting
results

...
ILOAD

IADD

...

...
ILOAD
IINC C1
IADD
IINC C8
...

...
27865*ILOAD
11108*IADD
8764*meth1
() ...

...
10111
1
11011
1
...

...
10111
1
11011
1
...

...
101
111
110
111
...

...
10111
1
11011
1
...

...
10111
1
11011
1
...

...
101

110

...

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

6 Oct 8th, 2010

Idea and Advantages of ByCounter

!   Idea: instrument the application, not the virtual machine
!   Insert counters into existing bytecode, preserve method signatures

!   Advantages:
!   Instrumentation transparent to the application:

no functional side-effects (but: runtime overhead)
!   Method invocations by the bytecode of the instrumented method:

configurable and extendable treatment
!   No dependence on native interfaces, works on any JVM
!   Idea applicable to Dalvik, CLR etc.

!   Previous approaches: use modified JVMs or JVMTI etc.
!   Insufficient portability; not desirable in production environments

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

7 Oct 8th, 2010

Example: SOR Part of the Scimark
Benchmark in SPECjvm2008

!   No jumps, loops, method invocations or other control flow
è The number of executed bytecode instructions...

!   ... is independent of the input parameter values of num_flops
!   ... is independent of the state of the invocation target
!   ... can be determined statically

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

8 Oct 8th, 2010

Switching to Bytecode Instruction Sequences

!   Since counting bytecode instructions individually...
!   ... is costly in terms of runtime overhead (CPU, memory)
!   ... limits scalability, offers room for improvement

!   Solution: identify and use performance-invariant
bytecode instruction sequences (PIBISes)
!   Decreases amount of inserted instrumentation
!   Maintains existing precision of counting results
!   Similar to basic blocks (and dictionaries in data compression)

!   We extended ByCounter and studied the effects using
workloads of the SPECjvm2008 benchmark

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

9 Oct 8th, 2010

PIBISes: Treatment in ByCounter

!   PIBISes are not identical to basic blocks:
!   As with basic blocks: no jumps etc. allowed
!   Additionally: a PIBIS may not contain instructions with

parameter-dependent performance (which can change
between executions: cf. size parameter of newarray)

!   Extended ByCounter: identifies PIBISes
!   Instead of 1 counter incrementation for every single

executed instruction: 1 incrementation per PIBIS exec.
!   Note that some PIBISes still contain just one instruction

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

10 Oct 8th, 2010

Implementation of ByCounter for Java

!   Analysable, easily modifiable representation
!   Obtained using ASM framework

!   Insert counting instrumentation into application

!   Counters are long-typed bytecode local variables
(invisible outside the instrumented method),

!   Counters initialised when method execution starts
!   Each execution of instruction/PIBIS: counter is

also incremented
!   Report counters at method exit points (write to a log

file or report to a central „collector“ daemon)

1. Parse
program
bytecode

2. Instrument
parsed

program
representation

and run
resulting
bytecode

!   Instrumented .class files: persistable, usable by any ClassLoader
!   Existing workloads, harnesses, scripts and configurations can be used

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

11 Oct 8th, 2010

Preliminary Results

Kuperberg et al. - Invariant Analysis for Performance Evaluation

5.79

55.30

4.26
6.09

58.40

139.10

6.10

56.90
48.02

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Crypto.AES Derby MPEG Audio

Uninstrumented

Instrumented(Original Method)

Instrumented (PIBIS Analysis)

!   Durations in seconds
!   Median values based on 21

measurements using java.
lang.System.nanoTime()

!   Durations include result
aggregation and storage

!   JITting takes place (proof:
-XX:+PrintCompilation
JVM flag to enable logging)

Evaluation platform (runs Mac OS X 10.6.4, 64 bit):
!   2.8 GHz Intel Core 2 Duo, 4 GB of 1067 MHz DDR3 main memory
!   JVM 1.6.0_20 provided by Apple (default mode, equals –server)
!   -Xmx768M JVM flag to allocate 768 MB of heap memory

Software Design and Quality Group
Institute for Program Structures and Data Organization

12 Oct 8th, 2010

Related Work
!   Concerning SPECjvm98:

!   [Gregg et al., 2002] modified JVM to benchmarking methods and bytecode
instructions, no research on counting overhead

!   [Lambert and Power, 2005] static/dynamic frequencies of basic blocks
!   [Li et al., 2000] complete system simulation: not addressing bytecode-level

basic blocks or precise bytecode counts
!   SPECjvm2008

!   [Oi, 2009], [Oi, 2010] compared other performance metrics, different JVMs
!   [Shiv et al., 2009] impact of hardware architecture details on

SPECjvm2008 performance in comparison to other SPEC benchmarks
!   JVM-internal basic block analysis for Just-in-Time compilation etc.

!   Analysis results not available to platform-independent counting tools
!   Program optimisers, escape analysis and control flow graph analysis of

basic blocks have different objectives

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

13 Oct 8th, 2010

Assumptions and Limitations

!   Subsequences (i.e. Sub-PIBISes) irrelevant:
PIBISes should be as large as possible

!   Bytecode supplied to ByCounter must be „final“
!   Complex classloading in application servers: to test
!   ByCounter works as JVM „instrumentation agent“, too

!   JIT impact to be considered
!   Further evaluation needed (e.g. SPECjbb2005)
!   Instrumenting Java Platform API methods: t.b.d.

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

14 Oct 8th, 2010

Future Work

!   Further potential for decreasing runtime overhead
!   Identify performance-invariant methods:

no need for result reporting each time (counts constant)
!   Parallelise evaluation and aggregation of results on

multi-core execution platforms
!   Combine with purity analysis

!   To prevent counting code that otherwise is „dead code“

!   Study the shape/contents of different PIBISes
!   Also: their static/dynamic frequency

!   Compare overhead to JVMTI-based tools

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

15 Oct 8th, 2010

Bibliography

[BLC2002a] Bruneton, E., Lenglet, R., and Coupaye, T. (2002). ASM: a code manipulation tool to implement
 adaptable systems. Adaptable and Extensible Component Systems. http://asm.ow2.org.

[GPW2002a] Gregg, D., Power, J., and Waldron, J. (2002). Benchmarking the Java virtual architecture - the
 specjvm98 benchmark suite. Java Microarchitectures, pages 1–18.

[HKRR2009a] Hauck, M., Kuperberg, M., Krogmann, K., and Reussner, R. (2009). Modelling Layered
 Component Execution Environments for Performance Prediction. Springer LNCS, 2009

[KB2007a] Kuperberg, M. and Becker, S. (2007). Predicting Software Component Performance: On the
 Relevance of Parameters for Benchmarking Bytecode and APIs. Proceedings of the 12th
 International Workshop on Component Oriented Programming (WCOP 2007).

[KKR2008a] Kuperberg, M., Krogmann, K., and Reussner, R. (2008). Performance Prediction for Black-Box
 Components using Reengineered Parametric Behaviour. Springer LNCS, 2008.

[KKR2009a] Kuperberg, M., Krogmann, M., and Reussner, R. (2009). TimerMeter: Quantifying Properties
 of Software Timers for System Analysis. Proceedings of QEST2009.

[KKR2010a] Krogmann, K., Kuperberg, M., and Reussner, R. (2010). Using Genetic Search for Reverse
 Engineering of Parametric Behaviour Models for Performance Prediction.
 IEEE Transactions on Software Engineering. Accepted for publication, to appear 2010.

[SPECjvm2008] SPECjvm2008 Benchmarks. SPEC Corporation. http://www.spec.org/jvm2008/

Kuperberg et al. - Invariant Analysis for Performance Evaluation

Software Design and Quality Group
Institute for Program Structures and Data Organization

16 Oct 8th, 2010

Conclusions

!   Runtime bytecode instruction counts using ByCounter:
platform-independent dynamic performance metric
!   Successful usage in cross-platform perf. prediction [KKR2008a]
!   Uses transparent instrumentation of application bytecode
!   Neither profilers nor JVM monitoring tools are instruction-precise

!   New: to decrease overhead in ByCounter: identify and use
performance-invariant bytecode instruction sequences

!   Evaluation shows significant overhead decrease, e.g. for
SPECjvm2008 MPEGaudio: 2.9x lesser runtime overhead

Kuperberg et al. - Invariant Analysis for Performance Evaluation

