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Introduction

A distributed economic solution: MaGoG

THE GRID:
A WORLD PEER-TO-PEER MARKET
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Introduction

Spot price evolution
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Market model
Future contracts

@ Computing power is non-storable, and therefore non-tradeable

Price

- t+T Time

@ Future contract: agreement to buy/sell something at a future
date for a fixed price
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Market model
Future contracts

Price

t t+T, t+T, i
@ Futures allow to trade the underlying computing power

@ They extend the trading spectrum, allowing maximization of
the use of resources, as well as hedging and speculation
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Market model
Future contracts

@ Financials and storable commodities have a relation between
the Spot price and the Future price: F(t, T) = S(t)e""

t Present date
T Remaining time to maturity date

r Interest rate

@ Since computing power is non-storable: there is no direct
relation between the Spot price and the Future price

—> Model future prices directly
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Market model
Future contracts

@ We consider the variation in price, rather than the price itself:

AF(t,T) 7N

(@)
r—r

t.

-N

@ We limit the price variation at a particular time step by the
number of agents (finite)

@ Both positive and negative variations are allowed
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Market model
Future contracts

@ We introduce the concept of market pressure, which
determines the price variation of the market:

Market pressure Price variation

Demand > Supply —» AF(t,T) [ I .

Demand < Supply —3  AF(t,T) i Tt

Demand = Supply ——3» AF(t,T) ——+——
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Market model
Future contracts

@ The market is formed by its market participants
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@ We therefore specify the behaviour of each agent
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Market model
Future contracts

@ Agents take Markovian decisions

@ Discrete-time Markov chain. Independent for each agent.

@ Three possible actions or states: {—1,0,1}

A

Ti(-=1,-1) Ti(-1,0) Ti(-1,1)
T,'(O, _1) Ti(07 0) TI(07
Ti(1,-1)  Ti(1,0)  Ti(1,
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Market model
Future contracts

@ Agents trade future contracts of computing power for delivery
at an arbitrary future date

@ Agents submit ‘market orders’ with their intention to buy(1),
sell(-1) or hold(0) at the current market price
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Market model
Market model

@ The market state is the result of considering the individual
actions of all agents — 3V states!!

@ By using the concept of market pressure:
Market state = Sum of the individual states of the agents

@ Then the number of market states is reduced to 2V + 1
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Market model
Transition probability matrix of the market

M= (msg | =N <s,d <N),

P(—N,—N) ... P(=N,0) ... P(—N,N)
M = P(O,:—N) P((;,O) P(O:,N)

P(N,:—N) P(I\:I,O) P(I\},N)
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Market model
Transition probability matrix of the market

@ The global matrix is calculated via generating functions,
which use convolutions to generate all the states

@ Calculations are simplified when all agents are equal

@ Normally there will be a few groups of agents, each group
containing the same kind of agents
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Simulation

Simulation

@ An ideal simulation setup with a fully connected network gives
the same results as the analytic model

—— Analytic
i --- Simulations
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Simulation

Simulation

@ For a non-ideal simulation setup (peer-to-peer), shifting and
scaling factors need to be found to design the architecture
accordingly
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Futures trading

o Allow trading the underlying computing power
o Maximise use of resources
o Hedging

o Speculation
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MDP

@ Markov Decision Processes are used for decision-making in
sequential, uncertain environments

@ The decision maker receives a reward depending on his chosen
action and the change in the system state
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MDP

MDP: States of the system

Sipos = (i, ]i|, pos) with i, pose ZN[—N,N]
i Price variation: given by the transition probability
matrix of the market
|i| Trading volume: available to be bought or sold

pos Open position of the trader
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MDP

MDP: Actions of the trader

@ The trader can buy one future contract (1), sell one future
contract (-1) or hold his position (0) at every decision epoch

@ He is limited to have an open position between —N and N

@ The number of decision epochs is infinite
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MDP

MDP: Reward for the trader $

@ The trader receives a reward depending on his actions and the
evolution of the system

@ We specify a reward that consists of two parts

@ The first part is the profit/loss due to the trader’s position
and the price variation

n(s.a) = 3" n(s. a))p(ls. 2)

JeSs

ri(s, a,j) = ij * pos;
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MDP

MDP: Reward for the trader $

@ The second part of the reward is a penalty for being unable to
liquidate the open position

r2(57 a) = Z r2(S, aaj)p(j’s’ a)

JE€S

ra(s, a,j) = —c » max(|pos]| — |il;,0), c e R

@ Total reward:

r(s,a) = ri(s,a) + rn(s,a)
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MDP

MDP: Optimal trading policy

@ Find an optimal trading policy

@ Infinite number of decision epochs — apply a discount factor
A (0 < X < 1) that makes future rewards less valuable

@ Expected total present value of the reward:

Vi(s) = EZF{D_ A (X, Ye))

t=1

—> Find the policy 7 that maximizes this reward
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MDP

MDP: Optimal trading policy via Linear Programming

o Easy formulation

@ Discounted Markov Decision problem = Linear
Programming problem
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MDP

MDP: Optimal trading policy via Linear Programming

@ choosing a(j),j € S (being S the state space of the MDP) to
be positive scalars with > a(j) =1
Jjes
@ The dual linear program consists of maximizing:

Z Z r(s, a)x(s, a)

s€S acAcs
subject to:
> x(,a) = > > Aplils, a)x(s, a) = a())
acAc; SES acAcs

and x(s,a) > 0 for a€ Ac; and s € S.
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MDP

MDP: Optimal trading policy via Linear Programming

@ Solving the dual = finding the x(s, a)

@ We then obtain a decision rule for each state by choosing the
action that gives the highest probability:

x(s, a)

2. x(s,d)

a’€Acs

P{d(s) = a} =

@ The set of the decision rules for each state of the MDP forms
the policy
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MDP: Example

03 04 03
Ti=1 03 04 03
0.3 04 03

0.120000
0.120000
M = | 0.111000
0.102222
0.090000

0.250000
0.238533
0.236000
0.231852
0.240000

Si,pos = (’7 |’|> pOS),

Acs = {-1,0,1},
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0.4

T,=| 04

0.330000
0.326178
0.329333
0.331852
0.340000

0.3

0.210000
0.213822
0.222667
0.231852
0.240000

03 0.3
0.2 0.4
04 0.3

0.090000
0.101467
0.101000
0.102222
0.090000

for i,pos € ZN[-2,2]
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MDP: Example

@ Penaly factor c = 0.1
@ Discount factor A = 0.95

@ The dual is solved with GLPK (GNU Linear Programming
Kit), using the same value for all the «(j)

@ In particular, the standard LP solver of GLPK, glpsol, is used,
and an optimal solution is found by the simplex method
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MDP: Example

@ Optimal policy: trader's optimal action for each state of the

MDP
So,—2 | 1 S 0 S1,2|0
So—1 | -1 So1 | -1 S1-1 -1
So0 | -1 S20 -1 S 10 1
Son1 | -1 So1 -1 S11 | -1
Sop | -1 S22 -1 S_12 |-1
S1, 2] 0 So 2|1
S1,-1 | -1 So_1|-1
S10 |-1 S 20 1
S10 | -1 S_o1 0
S10 |-1 Soo |-1
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Conclusion
Conclusion

@ World market for computing power

@ Markov character of the agents. Reduced state space of the
market by using market pressure

@ Trading of future contracts of computing power. Optimal
policy for MDP

@ Further work will consider implementation on a peer-to-peer
network

@ And agents with variable behaviour depending on their
neighbours
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Introduction Market model Simulation MDP Conclusion

Thank you
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