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Overview: This we believe

 Future parallel software adjusts dynamically vs. 

SPECcpu’s statically-linked legacy C code

 If you expect programmers to continue ―Moore’s 

Law‖ by doubling amount of portable parallelism 

in programs every 2 years, need hardware 

measurement for them to see how well doing

 During development inside an IDE

 During runtime so that app, resource 

scheduler, and OS can see and adapt

 Standardized Hardware Measurement may be 

as important as the IEEE Floating Point 

Standard
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The Transition to Multicore
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P.S. Multicore Revolution Could Fail

 John Hennessy, President, Stanford University:
“…when we start talking about parallelism and ease of use of truly 
parallel computers, we're talking about a problem that's as hard as 
any that computer science has faced. … 
I would be panicked if I were in industry.”
“A Conversation with Hennessy & Patterson,” ACM Queue Magazine, 1/07.

 100% failure rate of Parallel Computer Companies  
 Convex, Encore, Inmos (Transputer), MasPar, NCUBE, Kendall 

Square Research, Sequent, Silicon Graphics, Thinking Machines

 What if IT goes from a growth
industry to a replacement industry?
 If SW can’t effectively use 32, 64, ... 

cores per chip 
=> SW no faster on new computer 
=> Only buy if computer wears out
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Need a Fresh Approach 
to Parallelism

 Berkeley researchers from many backgrounds 
meeting since Feb. 2005 to discuss parallelism
 Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John 

Kubiatowicz, Edward Lee, George Necula, Dave Patterson, 
Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel 
computing, computer-aided design, embedded hardware 
and software, programming languages, compilers, 
scientific programming, and numerical analysis

 Tried to learn from successes in high-performance computing 
(LBNL) and parallel embedded (BWRC) 

 Led to “Berkeley View” Tech. Report 12/2006 and 
new Parallel Computing Laboratory (“Par Lab”)

 From Top 25 CS Depts, Intel/MS award UCB $10M

 Goal: Productive, Efficient, Correct, Portable SW for 
100+ cores & scale as core increase every 2 years (!)
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Dominant Application 
Platforms

 Data Center or Cloud (“Server”)

 Handheld/Tablet/Laptop (“Mobile Client”)

 Both together (“Server+Client”)

 Apps of the future are partly in the 
Cloud and partly in the Mobile Client, 
and functions may shift depending on 
platforms, connectivity, conditions
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Par Lab Apps

What are the compelling future workloads?

oNeed apps of future vs. legacy to drive agenda

o Improve research even if not the real killer apps

Computer Vision: Segment-Based Object 

Recognition, Poselet-Based Human Detection 

Health: MRI Reconstruction, Stroke Simulation

Music: 3D Enhancer, Hearing Aid, Novel UI

 Speech: Automatic Meeting Diary

 Video Games: Analysis of Smoke 2.0 Demo

Computational Finance: Value-at-Risk 

Estimation, Crank-Nicolson Option Pricing

 Parallel Browser: Layout, Scripting Language
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Par Lab Apps

 Examining our applications and future platforms 

it’s clear..

1. Users want full-featured computationally-intensive 

responsive applications

2. Power is very important for the cloud

3. Battery life (energy) is very important for client

Optimizing for performance is still the best 

way to get good energy efficiency which 

solves all 3 goals
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Autotuning for Code Generation

Search space for 

block sizes 

(dense matrix):

• Axes are block                                 

dimensions

• Temperature is                    

speed

 Problem: generating optimal code
like searching for needle in haystack

 Manycore  even more diverse

 New approach: “Auto-tuners” 

 1st generate program variations of 
combinations of optimizations 
(blocking, prefetching, …) and data 
structures

 Then compile and run to 
heuristically search for best code 
for that computer

 Examples: PHiPAC (BLAS), Atlas 
(BLAS), Spiral (DSP), FFT-W (FFT)
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Example on Intel Xeon X5500 

for 27 Point Stencil

 For 8 cores, 

autotuning gives 

~3X improvement 

over naïve code

 Common 

Subexpression 

Elimination

 SIMDization

 Core Blocking

 NUMA aware
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Make productivity programmers efficient, 

and efficiency programmers productive?

 Autotuning has great potential for achieving good 

performance for applications

 Unfortunately,

 They take an expert a long time to write

 There isn’t a good framework for reusing them 

or for others to deploy them in ordinary code

 They tune statically for a fixed platform —

concurrently running applications violate this 

assumption

 The search space is large—taking a lot of cycles and 

a long time to explore
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Make productivity programmers efficient, 

and efficiency programmers productive?

Libraries?  Can be helpful, but brittle

 Situation off a little from what you need 

and you can’t use library
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Make productivity programmers efficient, 

and efficiency programmers productive?

 Productivity level language (PLL): Python, Ruby

 high-level abstractions well-matched to application 

domain => 5x faster development and 3-10x fewer 

lines of code

 >90% of programmers 

 Efficiency level language (ELL): C/C++, CUDA, OpenCL

 >5x longer development time

 potentially 10x-100x better performance by exposing 

HW model 

 <10% of programmers

 5x development time ≠ 10x-100x performance!

Raise level of abstraction and get performance?
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Motifs common across applications
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App 1 App 2 App 3

Dense Sparse Graph Trav.
Berkeley View 
Motifs 
(“Dwarfs”)
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 How do compelling apps relate to 12 motifs?

Motif (nee “Dwarf”) Popularity 
(Red Hot  Blue Cool)
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Stovepipes connect Productivity 

and Efficiency Programmers
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Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Humans must 

produce these
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SEJITS: Selective, Embedded 

Just-in-Time Specialization

Productivity programmers write in general 

purpose, modern, high level PLL

SEJITS infrastructure Specializes 

(optimizes, tunes) computation motifs 

Selectively at runtime

Specialization uses runtime info to 

generate and JIT-compile ELL code 

targeted to hardware

Embedded because PLL’s own machinery 

enables (vs. extending PLL interpreter)
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Note to SPEC

 Want to benchmark autotuner, JIT, compiler 

adapting to the hardware being used at install 

time as well as during run time

 Statically linked legacy C programs irrelevant to 

multicore future

 Good idea in 1980s not so much in 2010s
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Make productivity programmers efficient, 

and efficiency programmers productive?

 Autotuning has great potential for achieving good 

performance for applications

 Unfortunately,

 They take an expert a long time to write — Still True

 There isn’t a good framework for reusing them or for 

others to deploy them in ordinary code  — SEJITS

 They tune statically for a fixed platform —

concurrently running applications violate this —

Adaptive Applications and OS + Hardware 

Measurement?

 The search space is large—taking a lot of cycles to 

explore and a long time – Machine Learning + 

Hardware Measuremeant (Later in Talk) to 

democratize autotuning
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Parallel Resource Allocation 

Needs Help

 Real-time apps adapt to resources available

 Not enough resources:

 Lower quality of audio synthesis so no clicks 

in music

 Reduce quality of graphics or realism of 

physics simulations to get steady frame rate 

 Reduce complexity of web pages served to 

meet response times SLO under heavy load

 Too many resources:

 Release resources back to OS to preserve 

battery life in client or save power in cloud
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Tessellation: ParLab Manycore OS

 Space-Time Partitioning 

 Provides performance 

isolation to applications

 Strict QoS guarantees

 Makes performance 

tuning/autotuning more 

effective

 Can adapt partition sizes 

for current mix of 

applications to meet 

performance and energy 

goals for the system
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RAMP Gold

 Rapid accurate simulation of 
manycore architectural ideas 
using FPGAs

 Initial version models 64 cores 
of SPARC v8 with shared 
memory system on $750 board

 Hardware FPU, MMU, boots OS

 250X faster than SW simulator

Cost
Performance

(MIPS)
Simulations per day

Software
Simulator

$2,000 0.1 - 1 1

RAMP Gold $2,000 + $750 50 - 100 100
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Recent Results: Vision Acceleration

 Bryan Catanzaro: Parallelizing 
Computer Vision (image segmentation)

 Problem: Malik’s highest quality algorithm 
was 5.5 minutes / image on new PC 

 Good SW architecture+talk within Par Lab
on to use new algorithms, data structures
 Bor-Yiing Su, Yunsup Lee, Narayanan Sundaram, 

Mark Murphy, Kurt Keutzer, Jim Demmel, Sam Williams

 Current result: 1.8 seconds / image on manycore

 ~ 150X speedup 

 Factor of 10 quantitative change is a qualitative change

Malik: “This will revolutionize computer vision.”
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Recent Results: Fast Pediatric MRI

28

 Pediatric MRI is difficult

 Children cannot keep still or hold breath

 Low tolerance for long exams

 Must put children under anesthesia: 

risky & costly

 Need techniques to accelerate MRI 

acquisition (sample & multiple sensors)

 Reconstruction must also be fast, or time 

saved in acquisition is lost in compute  

 Current reconstruction time: 2 hours 

 Non-starter for clinical use

 Mark Murphy (Par Lab) reconstruction: 1 minute on manycore

 Fast enough for radiologist to make critical decisions

 Dr. Shreyas Vasanawala (Lucille Packard Children's    

Hospital) put into use Feb 2010 for further clinical study
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Par Lab’s research “bets”

 Let compelling applications drive research agenda

 Software platform: mobile client + cloud 

 Apps that dynamically shift functions between client 
& client depending on conditions

 Identify common programming patterns to reveal 
parallelism

 Productivity versus efficiency programmers

 Autotuning and software synthesis

 OS/Architecture support multiple applications running 
simultaneously that adapt to save energy

 FPGA simulation of new parallel architectures: RAMP

 Build power/performance measurement into stack to 
help autotuning, SEJITS, scheduling, energy efficiency 



BERKELEY PAR LAB

Outline

 Par Lab

Motivation, Context, Approach, Apps, 

SW Stack, Architecture, and Recent Results

Case for Hardware Measurement

 Performance Portability Experiment

 Parallel Resource Allocation Needs

 Shortcomings of Current Counters

 SHOT Architecture and 1st Implementation

 Potential Concerns

Conclusion

30



BERKELEY PAR LAB

Why Hardware Measurement?

 Writing parallel code is hard

 Only reasons are performance or energy 

efficiency

 Otherwise write sequential code

 To become mainstream, parallel code must be 

portable

 Hence parallel HW/SW must support 

performance-portable parallel software

 Yet HW getting more diverse (multicore, mobile 

platforms, cloud) and SW getting more dynamic 

(autotuning, SEJITS, acquiring/releasing 

resources to save energy, client-cloud shifting)
31
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 Even next generation 

Intel MPU is ~3X 

slower if tuned to old 

architecture

 Naïve code for 

Niagara 2 always 

faster than code 

tuned for another

 Code tuned for Blue 

Gene on Niagara 2 

25X slower

Performance Portability is Hard

32

 Code tuned for 

another machine 

~ 1.5X to 3X slower 

(terrible for battery life)

 Code tuned for Blue 

Gene always slower 

than naïve code
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7 Shortcomings 

of Current Counters

1. Essential metrics are not measurable

 Not able to compute memory traffic on an 

Opteron or POWER5 because prefetches 

not measurable by an accessible counter

2. Many metrics are strongly tied to 

microarchitectural details

 SiCortex has performance counters for stalls 

in each pipeline stage but hard to know what 

is happening in each stage
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7 Shortcomings 

of Current Counters

3. High access overheads

 Some systems require serialization of the 

pipeline in order to access counters

 Can’t put measurement inside functions and 

too expensive to support adaptation on the fly

4. Limited number of counters that can be used 

simultaneously

 IBM Blue Gene can measure + and −, 

or × and ÷, but not both at the same

34
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7 Shortcomings 

of Current Counters

5. No support for multiple applications

 AMD Barcelona: One core’s programming of 

shared L3 cache counters can be over-ridden 

by another core, and no way to prohibit it

6. Not standardized

 Not consistently available on enough MPUs 

for apps and OSes to rely on them

7. Not correct or not functional

 R12000 instructions decoded counter off 25%

 Counters not thought a critical component to 

verify since intended only for chip engineers 
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SHOT Functional Requirements

 Standardized Hardware Operation Tracker: SHOT

 Since some counters are per core, SW must read 

all counters as if on same clock edge

 e.g., via distributed latches loaded 

simultaneously

 Don’t need to be perfect counts, just 

consistent: accuracy ± 1% OK

 Low latency reads so deployed in production 

code

 Can be read by OS and by user apps

 To be used by virtual machines, must be able to 

save and restore as part of context switch 36
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Minimum SHOT Architecture

1. Global real time clock (vs. count clock cycles)

 Since clock rate varies due to Dynamic 

Voltage and Frequency Scaling (DVFS)

 ~ 100 MHz (fast enough for apps)

2. Number instructions retired per core

 Measure computation throughput

3. Off-chip memory traffic (including prefetching)

 Key to performance and energy

 Standard so apps and OS can rely on them

 Implemented on RAMP Gold FPGA Simulator
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Expanded SHOT Architecture

 Desirable, but not part of minimum standard

4. Energy consumption per task of SW visible 

components (cores, caches)

5. Instructions executed by type

 Floating point, integer, load, store, control

6. Cache traffic by category

 Speculative, compulsory, capacity miss, 

conflict miss, write allocate, write back, 

coherency

7. Time spent in each power state for each 

component

38
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SHOT Target Audience

Operating System

 Adjust resources between apps – Runtime

 Co-schedule applications with disjoint 

resource requirements – Runtime

 Library, Framework, and Autotuner Writers

 Runtime performance to adjust thread 

scheduling, make algorithmic changes, and 

release resources – Install Time & Runtime

 Efficiency Programmers as part of IDE tools

 Development Time

 Productivity Programmers

 Not directly - benefit from OS and Library use
39
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Make productivity programmers efficient, 

and efficiency programmers productive?

 Autotuning problem: The search space is large—taking a 

lot of cycles to explore and a long time

 Search Full Parameter Space

 More than 180 Days

 Using machine learning + few performance counters 

to democratize autotuning

 12 minutes to find solution

 ~As good or even beat the expert!

 -1% and 16% for a 7-pt Stencil

 -2% and 15% for a 27-pt Stencil

 18% and 50% for dense matrix

 Enables even greater range of optimizations than we 

imagined
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Used SHOT in OS scheduling 

on RAMP Gold

Runtime OS schedule 2 programs via prediction 

using counters within 3% optimal, 1.7X – 2X 

faster than dividing machine or time multiplexing 

41
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5 Potential Concerns

1. Given that current MPUs have 100s of events 

they can count, it is impossible to select a 

useful architecture-independent set of metrics

 Detailed microarchitectural runtime info from 

100s of events is wrong level of performance  

abstraction for parallel software

 Just need a few, top-down measurements

2. Such measurement hardware is too expensive

 Counters can be made small and low power, 

accuracy ± 1% OK

 SiCortex’s performance counters account for 

0.05% of the transistors on chip
42
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5 Potential Concerns

3. Exposing power and performance information 

is a competitive disadvantage

 E.g., could show customers that 1 core runs 

slower, hotter due to process variation

 E.g., could give away microarchitectural 

details that are a competitive advantage

 But not exposing a disadvantage since apps, 

libraries, frameworks, runtimes and OSes 

that use them will run more efficiently on a 

competitor’s chip that implements SHOT

43
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5 Potential Concerns

4. Standardization can be done entirely in SW

 SW standard intractable

 PAPI started 1999, not portable, and 

developers say situation getting worse

5. SHOT creates an Information Side Channel that 

can be a security threat

 Much of this info can already be approximated

 Difficult in practice because adversarial code 

must also know if victim app is running, what 

other programs are sharing the resource

 So many simpler attacks that this is not high 

on security experts list of concerns 44
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Conclusion

 SW adapts more at runtime than in the past

 Client-Cloud, Energy saving, Autotuning, 

SEJITS, scheduler, OS

 Parallel HW even more diverse than sequential

 Code for other platform runs ~1.5X-3X slower

Multicore challenge hardest for CS in 50 years

 Performance portability is one of main 

obstacles

 For programmers to sustain ―Moore’s Law,‖ 

architects must make HW measurable to different 

SW layers during development and during runtime

 SHOT as big impact on portable parallel code as 

IEEE 754 Fl. Pt. Std. on portable numerical code?
45
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One Approach to a Parallel Software 

Stack: DSLs + Layering

47

App 1 App 2 App 3

DSL 1 DSL 2 DSL N

Common Intermediate Language

Common Parallel Runtime

Hardware A Hardware B Hardware C

DSL: Domain 
Specific 
Language
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Why not DSLs + Layers?

Domains: Too many, too dynamic

 New domain per app?

Multiple domains in one app? Learn new syntax?

Layers: Abstraction loses important information

 Can’t encode all relevant knowledge about code 
above, or machine below
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Specifically...

Use PLL introspection & dynamic features:

 intercept entry to ―potentially specializable‖ function 

 inspect abstract syntax tree (AST) of computation 

looking for specializable computation patterns

 (lookup in catalog of specializers)

 If a specializer is found, it can:

 manipulate/traverse AST of the function

 emit & JIT-compile ELL source code

 dynamically link compiled code to PLL interp

 Fallback: just continue in PLL

Necessary features present in modern PLL’s, 

but absent from older widely-used PLL’s
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Core

Par Lab Multi-

Paradigm Architecture

 Single “Fat” 

ILP-focused 

Tile Control 

Processor

 Multiple “Thin” 

Lane Control 

Processors 

embedded in 

vector-thread 

lane

Tile

Tile-Private L2U$

Fat Tile 
Control 
Processor
(ILP)

L1D$

L1I$

Shareable L3$/LL$

Vector-
Thread
Lane

Thin 
Scalar 
Control
Proc.

Vector-
Thread
Lane

Thin 
Scalar 
Control
Proc.

Vector-
Thread
Lane

Thin 
Scalar 
Control
Proc.

 Tile Control Processor, Lane Control Processor, and 
Vector-Thread microthreads all run the same ISA, but 
microarchs optimized for different forms of parallelism


