
BERKELEY PAR LABBERKELEY PAR LAB

Software Knows Best:

Portable Parallelism Requires

Standardized Measurements

of Transparent Hardware

Sarah Bird, Archana Ganapathi, Kaushik Datta,

Karl Fuerlinger, Shoaib Kamil, Rajesh Nishtala,

David Skinner, Andrew Waterman, Sam Williams,

Krste Asanović, and Dave Patterson

January 29, 2010

BERKELEY PAR LAB

Overview: This we believe

 Future parallel software adjusts dynamically vs.

SPECcpu’s statically-linked legacy C code

 If you expect programmers to continue ―Moore’s

Law‖ by doubling amount of portable parallelism

in programs every 2 years, need hardware

measurement for them to see how well doing

 During development inside an IDE

 During runtime so that app, resource

scheduler, and OS can see and adapt

 Standardized Hardware Measurement may be

as important as the IEEE Floating Point

Standard
2

BERKELEY PAR LAB

Outline

 Par Lab

 Motivation, Context, Approach, Apps,

SW Stack, Architecture, and Recent Results

Case for Hardware Measurement

 Performance Portability Experiment

 Parallel Resource Allocation Needs

 Shortcomings of Current Counters

 SHOT Architecture and 1st Implementation

 Potential Concerns

Conclusion

3

BERKELEY PAR LAB

The Transition to Multicore

4

Sequential App
Performance

BERKELEY PAR LAB

5

0

50

100

150

200

250

300

1985 1995 2005 2015

Millions of
PCs / year

P.S. Multicore Revolution Could Fail

 John Hennessy, President, Stanford University:
“…when we start talking about parallelism and ease of use of truly
parallel computers, we're talking about a problem that's as hard as
any that computer science has faced. …
I would be panicked if I were in industry.”
“A Conversation with Hennessy & Patterson,” ACM Queue Magazine, 1/07.

 100% failure rate of Parallel Computer Companies
 Convex, Encore, Inmos (Transputer), MasPar, NCUBE, Kendall

Square Research, Sequent, Silicon Graphics, Thinking Machines

 What if IT goes from a growth
industry to a replacement industry?
 If SW can’t effectively use 32, 64, ...

cores per chip
=> SW no faster on new computer
=> Only buy if computer wears out

BERKELEY PAR LAB

6

Need a Fresh Approach
to Parallelism

 Berkeley researchers from many backgrounds
meeting since Feb. 2005 to discuss parallelism
 Krste Asanovic, Ras Bodik, Jim Demmel, Kurt Keutzer, John

Kubiatowicz, Edward Lee, George Necula, Dave Patterson,
Koushik Sen, John Shalf, John Wawrzynek, Kathy Yelick, …

 Circuit design, computer architecture, massively parallel
computing, computer-aided design, embedded hardware
and software, programming languages, compilers,
scientific programming, and numerical analysis

 Tried to learn from successes in high-performance computing
(LBNL) and parallel embedded (BWRC)

 Led to “Berkeley View” Tech. Report 12/2006 and
new Parallel Computing Laboratory (“Par Lab”)

 From Top 25 CS Depts, Intel/MS award UCB $10M

 Goal: Productive, Efficient, Correct, Portable SW for
100+ cores & scale as core increase every 2 years (!)

BERKELEY PAR LAB

7

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Patterns/Motifs

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Easy to write portable code that runs efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

ParLab Manycore/RAMP

Hypervisor

C
o
rr

e
c
tn

e
s
s

Selective Embedded JIT Specialization

Parallel

Libraries

Parallel

Frameworks

Dynamic

Checking

Debugging

with Replay

Directed

Testing

Autotuners

Efficiency

Languages

D
ia

g
n
o

s
in

g
 P

o
w

e
r/

P
e
rf

o
rm

a
n
c
e

Par Lab Research Overview

Productivity

Languages

BERKELEY PAR LAB

8

Dominant Application
Platforms

 Data Center or Cloud (“Server”)

 Handheld/Tablet/Laptop (“Mobile Client”)

 Both together (“Server+Client”)

 Apps of the future are partly in the
Cloud and partly in the Mobile Client,
and functions may shift depending on
platforms, connectivity, conditions

BERKELEY PAR LAB

Par Lab Apps

What are the compelling future workloads?

oNeed apps of future vs. legacy to drive agenda

o Improve research even if not the real killer apps

Computer Vision: Segment-Based Object

Recognition, Poselet-Based Human Detection

Health: MRI Reconstruction, Stroke Simulation

Music: 3D Enhancer, Hearing Aid, Novel UI

 Speech: Automatic Meeting Diary

 Video Games: Analysis of Smoke 2.0 Demo

Computational Finance: Value-at-Risk

Estimation, Crank-Nicolson Option Pricing

 Parallel Browser: Layout, Scripting Language
9

BERKELEY PAR LAB

Par Lab Apps

 Examining our applications and future platforms

it’s clear..

1. Users want full-featured computationally-intensive

responsive applications

2. Power is very important for the cloud

3. Battery life (energy) is very important for client

Optimizing for performance is still the best

way to get good energy efficiency which

solves all 3 goals

10

BERKELEY PAR LAB

11

Autotuning for Code Generation

Search space for

block sizes

(dense matrix):

• Axes are block

dimensions

• Temperature is

speed

 Problem: generating optimal code
like searching for needle in haystack

 Manycore even more diverse

 New approach: “Auto-tuners”

 1st generate program variations of
combinations of optimizations
(blocking, prefetching, …) and data
structures

 Then compile and run to
heuristically search for best code
for that computer

 Examples: PHiPAC (BLAS), Atlas
(BLAS), Spiral (DSP), FFT-W (FFT)

BERKELEY PAR LAB

Example on Intel Xeon X5500

for 27 Point Stencil

 For 8 cores,

autotuning gives

~3X improvement

over naïve code

 Common

Subexpression

Elimination

 SIMDization

 Core Blocking

 NUMA aware

12

BERKELEY PAR LAB

Make productivity programmers efficient,

and efficiency programmers productive?

 Autotuning has great potential for achieving good

performance for applications

 Unfortunately,

 They take an expert a long time to write

 There isn’t a good framework for reusing them

or for others to deploy them in ordinary code

 They tune statically for a fixed platform —

concurrently running applications violate this

assumption

 The search space is large—taking a lot of cycles and

a long time to explore

BERKELEY PAR LAB

Make productivity programmers efficient,

and efficiency programmers productive?

Libraries? Can be helpful, but brittle

 Situation off a little from what you need

and you can’t use library

BERKELEY PAR LAB

Make productivity programmers efficient,

and efficiency programmers productive?

 Productivity level language (PLL): Python, Ruby

 high-level abstractions well-matched to application

domain => 5x faster development and 3-10x fewer

lines of code

 >90% of programmers

 Efficiency level language (ELL): C/C++, CUDA, OpenCL

 >5x longer development time

 potentially 10x-100x better performance by exposing

HW model

 <10% of programmers

 5x development time ≠ 10x-100x performance!

Raise level of abstraction and get performance?

BERKELEY PAR LAB

Motifs common across applications

16

App 1 App 2 App 3

Dense Sparse Graph Trav.
Berkeley View
Motifs
(“Dwarfs”)

BERKELEY PAR LAB

17

 How do compelling apps relate to 12 motifs?

Motif (nee “Dwarf”) Popularity
(Red Hot Blue Cool)

BERKELEY PAR LAB

Stovepipes connect Productivity

and Efficiency Programmers

18

Multicore GPU “Cloud”

App 1 App 2 App 3

Dense Sparse Graph Trav.

Humans must

produce these

BERKELEY PAR LAB

SEJITS: Selective, Embedded

Just-in-Time Specialization

Productivity programmers write in general

purpose, modern, high level PLL

SEJITS infrastructure Specializes

(optimizes, tunes) computation motifs

Selectively at runtime

Specialization uses runtime info to

generate and JIT-compile ELL code

targeted to hardware

Embedded because PLL’s own machinery

enables (vs. extending PLL interpreter)

BERKELEY PAR LAB

.py

OS/HW

f() @h()

Specializer

.c

P
L
L
 I

n
te

rp

@g(

)

SEJITS

Productivity app

perf.

counter

s

.so

cc/ld

$

SEJITS makes tuning decisions

per-function (not per-app)

BERKELEY PAR LAB

.py

OS/HW

f() @h()

Specializer

.c

P
L
L
 I

n
te

rp

@g(

)

SEJITS

Productivity app

perf.

counter

s

.so

cc/ld

$

SEJITS makes tuning decisions

per-function (not per-app)

Selective

Embedded

JIT

Specialization

BERKELEY PAR LAB

Note to SPEC

 Want to benchmark autotuner, JIT, compiler

adapting to the hardware being used at install

time as well as during run time

 Statically linked legacy C programs irrelevant to

multicore future

 Good idea in 1980s not so much in 2010s

22

BERKELEY PAR LAB

Make productivity programmers efficient,

and efficiency programmers productive?

 Autotuning has great potential for achieving good

performance for applications

 Unfortunately,

 They take an expert a long time to write — Still True

 There isn’t a good framework for reusing them or for

others to deploy them in ordinary code — SEJITS

 They tune statically for a fixed platform —

concurrently running applications violate this —

Adaptive Applications and OS + Hardware

Measurement?

 The search space is large—taking a lot of cycles to

explore and a long time – Machine Learning +

Hardware Measuremeant (Later in Talk) to

democratize autotuning

BERKELEY PAR LAB

Parallel Resource Allocation

Needs Help

 Real-time apps adapt to resources available

 Not enough resources:

 Lower quality of audio synthesis so no clicks

in music

 Reduce quality of graphics or realism of

physics simulations to get steady frame rate

 Reduce complexity of web pages served to

meet response times SLO under heavy load

 Too many resources:

 Release resources back to OS to preserve

battery life in client or save power in cloud

24

BERKELEY PAR LAB

Tessellation: ParLab Manycore OS

 Space-Time Partitioning

 Provides performance

isolation to applications

 Strict QoS guarantees

 Makes performance

tuning/autotuning more

effective

 Can adapt partition sizes

for current mix of

applications to meet

performance and energy

goals for the system

2nd-level

Schedulin

g

2nd-level

Memory

Management

Address Space
A

Address Space
B T

a
s

k

Tessellation Kernel
(Partition Support)

CPU

L1

L2
Bank

DRAM

DRAM & I/O Interconnect

L1 Interconnect

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

CPU

L1

L2
Bank

DRAM

BERKELEY PAR LAB

RAMP Gold

 Rapid accurate simulation of
manycore architectural ideas
using FPGAs

 Initial version models 64 cores
of SPARC v8 with shared
memory system on $750 board

 Hardware FPU, MMU, boots OS

 250X faster than SW simulator

Cost
Performance

(MIPS)
Simulations per day

Software
Simulator

$2,000 0.1 - 1 1

RAMP Gold $2,000 + $750 50 - 100 100

BERKELEY PAR LAB

Recent Results: Vision Acceleration

 Bryan Catanzaro: Parallelizing
Computer Vision (image segmentation)

 Problem: Malik’s highest quality algorithm
was 5.5 minutes / image on new PC

 Good SW architecture+talk within Par Lab
on to use new algorithms, data structures
 Bor-Yiing Su, Yunsup Lee, Narayanan Sundaram,

Mark Murphy, Kurt Keutzer, Jim Demmel, Sam Williams

 Current result: 1.8 seconds / image on manycore

 ~ 150X speedup

 Factor of 10 quantitative change is a qualitative change

Malik: “This will revolutionize computer vision.”

27

BERKELEY PAR LAB

Recent Results: Fast Pediatric MRI

28

 Pediatric MRI is difficult

 Children cannot keep still or hold breath

 Low tolerance for long exams

 Must put children under anesthesia:

risky & costly

 Need techniques to accelerate MRI

acquisition (sample & multiple sensors)

 Reconstruction must also be fast, or time

saved in acquisition is lost in compute

 Current reconstruction time: 2 hours

 Non-starter for clinical use

 Mark Murphy (Par Lab) reconstruction: 1 minute on manycore

 Fast enough for radiologist to make critical decisions

 Dr. Shreyas Vasanawala (Lucille Packard Children's

Hospital) put into use Feb 2010 for further clinical study

BERKELEY PAR LAB

Par Lab’s research “bets”

 Let compelling applications drive research agenda

 Software platform: mobile client + cloud

 Apps that dynamically shift functions between client
& client depending on conditions

 Identify common programming patterns to reveal
parallelism

 Productivity versus efficiency programmers

 Autotuning and software synthesis

 OS/Architecture support multiple applications running
simultaneously that adapt to save energy

 FPGA simulation of new parallel architectures: RAMP

 Build power/performance measurement into stack to
help autotuning, SEJITS, scheduling, energy efficiency

BERKELEY PAR LAB

Outline

 Par Lab

Motivation, Context, Approach, Apps,

SW Stack, Architecture, and Recent Results

Case for Hardware Measurement

 Performance Portability Experiment

 Parallel Resource Allocation Needs

 Shortcomings of Current Counters

 SHOT Architecture and 1st Implementation

 Potential Concerns

Conclusion

30

BERKELEY PAR LAB

Why Hardware Measurement?

 Writing parallel code is hard

 Only reasons are performance or energy

efficiency

 Otherwise write sequential code

 To become mainstream, parallel code must be

portable

 Hence parallel HW/SW must support

performance-portable parallel software

 Yet HW getting more diverse (multicore, mobile

platforms, cloud) and SW getting more dynamic

(autotuning, SEJITS, acquiring/releasing

resources to save energy, client-cloud shifting)
31

BERKELEY PAR LAB

 Even next generation

Intel MPU is ~3X

slower if tuned to old

architecture

 Naïve code for

Niagara 2 always

faster than code

tuned for another

 Code tuned for Blue

Gene on Niagara 2

25X slower

Performance Portability is Hard

32

 Code tuned for

another machine

~ 1.5X to 3X slower

(terrible for battery life)

 Code tuned for Blue

Gene always slower

than naïve code

BERKELEY PAR LAB

7 Shortcomings

of Current Counters

1. Essential metrics are not measurable

 Not able to compute memory traffic on an

Opteron or POWER5 because prefetches

not measurable by an accessible counter

2. Many metrics are strongly tied to

microarchitectural details

 SiCortex has performance counters for stalls

in each pipeline stage but hard to know what

is happening in each stage

33

BERKELEY PAR LAB

7 Shortcomings

of Current Counters

3. High access overheads

 Some systems require serialization of the

pipeline in order to access counters

 Can’t put measurement inside functions and

too expensive to support adaptation on the fly

4. Limited number of counters that can be used

simultaneously

 IBM Blue Gene can measure + and −,

or × and ÷, but not both at the same

34

BERKELEY PAR LAB

7 Shortcomings

of Current Counters

5. No support for multiple applications

 AMD Barcelona: One core’s programming of

shared L3 cache counters can be over-ridden

by another core, and no way to prohibit it

6. Not standardized

 Not consistently available on enough MPUs

for apps and OSes to rely on them

7. Not correct or not functional

 R12000 instructions decoded counter off 25%

 Counters not thought a critical component to

verify since intended only for chip engineers

35

BERKELEY PAR LAB

SHOT Functional Requirements

 Standardized Hardware Operation Tracker: SHOT

 Since some counters are per core, SW must read

all counters as if on same clock edge

 e.g., via distributed latches loaded

simultaneously

 Don’t need to be perfect counts, just

consistent: accuracy ± 1% OK

 Low latency reads so deployed in production

code

 Can be read by OS and by user apps

 To be used by virtual machines, must be able to

save and restore as part of context switch 36

BERKELEY PAR LAB

Minimum SHOT Architecture

1. Global real time clock (vs. count clock cycles)

 Since clock rate varies due to Dynamic

Voltage and Frequency Scaling (DVFS)

 ~ 100 MHz (fast enough for apps)

2. Number instructions retired per core

 Measure computation throughput

3. Off-chip memory traffic (including prefetching)

 Key to performance and energy

 Standard so apps and OS can rely on them

 Implemented on RAMP Gold FPGA Simulator

37

BERKELEY PAR LAB

Expanded SHOT Architecture

 Desirable, but not part of minimum standard

4. Energy consumption per task of SW visible

components (cores, caches)

5. Instructions executed by type

 Floating point, integer, load, store, control

6. Cache traffic by category

 Speculative, compulsory, capacity miss,

conflict miss, write allocate, write back,

coherency

7. Time spent in each power state for each

component

38

BERKELEY PAR LAB

SHOT Target Audience

Operating System

 Adjust resources between apps – Runtime

 Co-schedule applications with disjoint

resource requirements – Runtime

 Library, Framework, and Autotuner Writers

 Runtime performance to adjust thread

scheduling, make algorithmic changes, and

release resources – Install Time & Runtime

 Efficiency Programmers as part of IDE tools

 Development Time

 Productivity Programmers

 Not directly - benefit from OS and Library use
39

BERKELEY PAR LAB

Make productivity programmers efficient,

and efficiency programmers productive?

 Autotuning problem: The search space is large—taking a

lot of cycles to explore and a long time

 Search Full Parameter Space

 More than 180 Days

 Using machine learning + few performance counters

to democratize autotuning

 12 minutes to find solution

 ~As good or even beat the expert!

 -1% and 16% for a 7-pt Stencil

 -2% and 15% for a 27-pt Stencil

 18% and 50% for dense matrix

 Enables even greater range of optimizations than we

imagined

BERKELEY PAR LAB

Used SHOT in OS scheduling

on RAMP Gold

Runtime OS schedule 2 programs via prediction

using counters within 3% optimal, 1.7X – 2X

faster than dividing machine or time multiplexing

41

BERKELEY PAR LAB

5 Potential Concerns

1. Given that current MPUs have 100s of events

they can count, it is impossible to select a

useful architecture-independent set of metrics

 Detailed microarchitectural runtime info from

100s of events is wrong level of performance

abstraction for parallel software

 Just need a few, top-down measurements

2. Such measurement hardware is too expensive

 Counters can be made small and low power,

accuracy ± 1% OK

 SiCortex’s performance counters account for

0.05% of the transistors on chip
42

BERKELEY PAR LAB

5 Potential Concerns

3. Exposing power and performance information

is a competitive disadvantage

 E.g., could show customers that 1 core runs

slower, hotter due to process variation

 E.g., could give away microarchitectural

details that are a competitive advantage

 But not exposing a disadvantage since apps,

libraries, frameworks, runtimes and OSes

that use them will run more efficiently on a

competitor’s chip that implements SHOT

43

BERKELEY PAR LAB

5 Potential Concerns

4. Standardization can be done entirely in SW

 SW standard intractable

 PAPI started 1999, not portable, and

developers say situation getting worse

5. SHOT creates an Information Side Channel that

can be a security threat

 Much of this info can already be approximated

 Difficult in practice because adversarial code

must also know if victim app is running, what

other programs are sharing the resource

 So many simpler attacks that this is not high

on security experts list of concerns 44

BERKELEY PAR LAB

Conclusion

 SW adapts more at runtime than in the past

 Client-Cloud, Energy saving, Autotuning,

SEJITS, scheduler, OS

 Parallel HW even more diverse than sequential

 Code for other platform runs ~1.5X-3X slower

Multicore challenge hardest for CS in 50 years

 Performance portability is one of main

obstacles

 For programmers to sustain ―Moore’s Law,‖

architects must make HW measurable to different

SW layers during development and during runtime

 SHOT as big impact on portable parallel code as

IEEE 754 Fl. Pt. Std. on portable numerical code?
45

BERKELEY PAR LAB

Backup Slides & References

 Asanović, K., R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,

D. Patterson, K. Sen, J. Wawrzynek, K. Yelick., "A View of the Parallel Computing

Landscape,” Communications of the ACM, vol. 52, no. 10, October 2009.

 Bird, S., A. Ganapathi, K. Datta, K. Fuerlinger, S. Kamil, R. Nishtala, D. Skinner, A.

Waterman, S. Williams, K. Asanović, D. Patterson, “Software Knows Best: Portable

Parallelism Requires Standardized Measurements of Transparent Hardware," submitted

for publication.

 Catanzaro, B., A. Fox, K. Keutzer, D. Patterson, B-Y. Su, M.Snir, K. Olukotun, P.

Hanrahan, and H. Chafi, “Ubiquitous Parallel Computing from Berkeley, Illinois and

Stanford,” IEEE Micro, to appear, March/April 2010.

 Catanzaro, B., S. Kamil, Y. Lee, K. Asanović, J. Demmel, K. Keutzer, J. Shalf, K. Yelick,

and A. Fox, "SEJITS: Getting Productivity and Performance with Selective Embedded

JIT Specialization,” 1st Workshop on Programmable Models for Emerging Architecture

(PMEA) at the 18th International Conference on Parallel Architectures and Compilation

Techniques, Raleigh, North Carolina, November 2009.

 Korn, W., P. Teller, and G. Castillo. Just how accurate are performance counters? IEEE

International Conference on Performance, Computing, and Communications, p. 303–

310, April 2001.

 Tan, Z., A. Waterman, S. Bird, H. Cook, K. Asanović, and D. A. Patterson, “A Case for

FAME: FPGA Architecture Model Execution,” submitted for publication.

46

BERKELEY PAR LAB

One Approach to a Parallel Software

Stack: DSLs + Layering

47

App 1 App 2 App 3

DSL 1 DSL 2 DSL N

Common Intermediate Language

Common Parallel Runtime

Hardware A Hardware B Hardware C

DSL: Domain
Specific
Language

BERKELEY PAR LAB
Why not DSLs + Layers?

Domains: Too many, too dynamic

 New domain per app?

Multiple domains in one app? Learn new syntax?

Layers: Abstraction loses important information

 Can’t encode all relevant knowledge about code
above, or machine below

BERKELEY PAR LAB

Specifically...

Use PLL introspection & dynamic features:

 intercept entry to ―potentially specializable‖ function

 inspect abstract syntax tree (AST) of computation

looking for specializable computation patterns

 (lookup in catalog of specializers)

 If a specializer is found, it can:

 manipulate/traverse AST of the function

 emit & JIT-compile ELL source code

 dynamically link compiled code to PLL interp

 Fallback: just continue in PLL

Necessary features present in modern PLL’s,

but absent from older widely-used PLL’s

BERKELEY PAR LAB

Core

Par Lab Multi-

Paradigm Architecture

 Single “Fat”

ILP-focused

Tile Control

Processor

 Multiple “Thin”

Lane Control

Processors

embedded in

vector-thread

lane

Tile

Tile-Private L2U$

Fat Tile
Control
Processor
(ILP)

L1D$

L1I$

Shareable L3$/LL$

Vector-
Thread
Lane

Thin
Scalar
Control
Proc.

Vector-
Thread
Lane

Thin
Scalar
Control
Proc.

Vector-
Thread
Lane

Thin
Scalar
Control
Proc.

 Tile Control Processor, Lane Control Processor, and
Vector-Thread microthreads all run the same ISA, but
microarchs optimized for different forms of parallelism

