
Performance aware open-world software in
a 3-layer architecture

Diego Perez-Palacin, Universidad de Zaragoza, Spain

José Merseguer, Universidad de Zaragoza, Spain

Simona Bernardi, Università di Torino, Italy

Context
  Open world software

  Publish-subscribe; SOA; grid computing; etc.
  Key idea: software made of services.

  Third parties providers; interplay without authorities.

  Performance problems
  Are valid the current assumptions in SPE?
  Can we trust in these third-parties?

  Challenge
  Self- adaptation or self-management

Ghezzi et al. “Toward open world-software: Issues and challenges”, IEEE
Computer 2006

Context (2)‏

  Kramer & Magee proposal
  Architecture for self- managed systems

  Reference architecture.
  Three layers  KM-3L
  Benefits:

  Scalability, abstraction, etc.

  Inspired in autonomic systems (robotics), since they are
self-managed systems.

Kramer and Magee “Self-managed systems: an architectural challenge”, FOSE 2007

KM-3L

KM-3L
  Idea

  Identify what a self-managed system needs to carry out its mission, without
human intervention.

  Component control
  Carries out the system mission.
  Sense environment; report status.

  Change management
  Has the strategy to carry out the mission.
  With a new status, executes the strategy to produce a new system configuration.
  If the new configuration does not fulfill the mission then asks for a new strategy.

  Goal management
  Produces strategies that satisfy the mission and consider the current

configuration.

Challenge: exploit KM-3L for the open-world to incorporate performance

KM-3L-4-OpenWorld: Component Control

KM-3L-4-OpenWorld: Component Control
  Responsibilities:

1. Tracking performance of components.

2. Discover new components.

3. Discover which components are no
longer available.

4. Bind & unbind components.

  Key: monitor module
•  (1) Measure time elapsed in the service

calls.

•  (2,3 and 4.) As usual in open-world.

  Other needs:
  Workflow (e.g., UML activity diagram)‏

  Syste
m
c
onfiguration (e.g., UML component diagram)‏

  Output:
  Curr

en
t
 status (monitored time,unreachable service)‏

  Input:
  New configuration

KM-3L-4-OpenWorld: Change
Management

KM-3L-4-OpenWorld: Change
Management

  Key:
  Reconfiguration controller module.

  Output:
  New system configuration.

  Input:
  System status.

  A new strategy.

  Actions:
  A component is no longer available or degraded.

  Executes the strategy to find a proper substitute.
  Reports new configuration.

  A new component is available for a given service.

  Updates the current system configuration.

KM-3L-4-OpenWorld: Goal Management

KM-3L-4-OpenWorld: Goal Management

  Responsibility:
  Produce performance aware

reconfiguration strategies.

  Key:
  Strategy generator module.

  Approaches:
  Library of strategies.

  Produce the strategy on demand.

  Output:

  Strategy that meets the
targe
t
 performance goal (e.g., response time)‏

  Input:

  The performance goal.

  The workflow specification.

  The current configuration.

  Discussion point:

  T
o
m
eet other goals (e.g., availability, price).

KM-3L-4-OpenWorld
Reconfiguration

Strategy
Generator

phase1 phase2 phase3
C11 (5,3000) (20,6000)
C21 (10,6000) (70,2000) (250,2000)
C22 (35,6000) (140,4000)
C31 (20,2000) (70,2000)
C32 (30,∞)

(MeanServiceTime, MeanSojournTime)

Time Table

  Reconfiguration strategy  directed graph
  Nodes are system configurations
  Edges represent changes of configurations
◦  Forward edges:
  Replacement of a component.
  Phase change of a component.
  Labels  confidence levels.
◦  Backward edges:
  Timeouts to bring back the system to a previous

configuration.

  Assume each provider works in best mode, i.e.,
minimum mean service time

  Four possible configurations in the example.
Mean response time estimation

C11:ph1 C21:ph1 C31:ph1 60.5

C11:ph1 C22:ph1 C31:ph1 177.6

C11:ph1 C21:ph1 C32:ph1 72.5

C11:ph1 C22:ph1 C31:ph1 193.8

  Each configuration parameterizes the Petri net.
  Solve the Petri nets and choose the best

 configuration.

  Consider that current
pro
viders can degrade their performance  3 adjacent nodes

  Node1 (provider one degraded)‏
◦  No choice  only one provider

◦  Solve the Petri net using phase2 of C11.

◦  Is the performance goal achieved?

  Node2 (provider two degraded)‏
◦  Alternatives: use C22 or C21 in phase2.

◦  Again four possible configurations.

◦  Solve the Petri net.

  Rational:
◦  Our confidence in a configuration change.

◦  Ad-hoc heuristic under the open workload assumption.

  Confidence = Improvement/(Improvement+Lost)‏
◦  Impro

ve
ment = RT_source_ch_phase- RT_target (OK reconfiguration)‏

◦  Lost = RT_target – RT_source (wrong reconfiguration)‏

  Rational
◦  We can perform erroneous reconfigurations.

◦  So, after a timeout bring back the system to a state
that performs better:

  Identify nodes where components perform in their
worst phase.

◦  Ideal timeout?  Future work

  We analyzed the system without reconfigurations and
using the components with their best mean response
times Response time: 494 tu

  We analyzed the system using the strategy graph 
Response time: 436 tu

  Improvement: 11%

Related works

  [5] Ghezzi & Tamburrelli ``Predicting
perfo
r
mance properties for open systems with kami”, QoSA, 2009
  Performance evaluation in

open-
w
orld. Assuming components evolving independentely and unpredictably.

 Queuing networks.

 Does not address the problem of generate strategies.

  [10,11,15]
Menascé'
s
 works (ICWS'07, Performance Evaluation'07 and WOSP'05)‏
  Evaluate service-based software.

Conclusion
  Original idea

  Introduce a reference architecture from self-managed systems in the
open-world context.

  Contributions
  Adapt KM-3L to open-world software → focuss the Performance

problem.

  Proposal for reconfiguration strategies module.

  Challenge
  From models to real implementations → software with the ability to

reconfigure itself.

  Problem → run-time Petri net evaluation with exact analysis tecniques.

  Solution → Use Petri net bounds.

  Final Remark
  The algorithm has been implemented.

Thanks!

