Performance aware open-world software in
a 3-layer architecture

Diego Perez-Palacin, Universidad de Zaragoza, Spain
José Merseguer, Universidad de Zaragoza, Spain

Simona Bernardi, Universita di Torino, Italy

Context

= Open world software

= Publish-subscribe; SOA; grid computing; etc.
= Key idea: software made of services.
= Third parties providers; interplay without authorities.

= Performance problems

= Are valid the current assumptions in SPE?
= Can we trust in these third-parties?

= Challenge

= Self- adaptation or self-management

Ghezzi et al. “Toward open world-software: Issues and challenges”, IEEE
Computer 2006

Context (2)

= Kramer & Magee proposal

= Architecture for self- managed systems

« Reference architecture.
= Three layers - KM-3L
« Benefits:

= Scalability, abstraction, etc.

= Inspired in autonomic systems (robotics), since they are
self-managed systems.

Kramer and Magee “Self-managed systems: an architectural challenge”, FOSE 2007]

KM-3L

Goal
management
New Strategy Strategy Request
Change
management A
Change Status
Configurationv
Component

control

KM-3L

|dea

= ldentify what a self-managed system needs to carry out its mission, without
human intervention.

Component control

= Carries out the system mission.
= Sense environment; report status.

Change management

= Has the strategy to carry out the mission.

= With a new status, executes the strategy to produce a new system configuration.

= |f the new configuration does not fulfill the mission then asks for a new strategy.

Goal management

= Produces strategies that satisfy the mission and consider the current
configuration.

KM-3L-4-OpenWorld: Component Control

Goal

management

Change

management A
Change Status
Configuration'

Component

control Configuration System Monitor
Workflow

AR -

KM-3L-4-OpenWorld: Component Control

= Responsibilities:

1. Tracking performance of components.
2. Discover new components.

3. Discover which components are no

longer available. . Other needs:

4. Bind & unbind components. _
= Workflow (e.g., UML activity diagram)

= Key: monitor module . Syste

(1) Measure time elapsed in the service Ln

calls. onfiguration (e.g., UML component diagram)

* (2,3 and 4.) As usual in open-worlq. Output:

= Curr
en
t
status (monitored time,unreachable service)

= Input:

— Nlaw ~ranfiainiratinn

KM-3L-4-OpenWorld: Change

Management
Goal
management A
New Strategy Strategy Request
Reconfiguration Reconfiguration Component

Chang € Strategy Controller Diagram
management

Change Status

Conﬁ'guration'
Component
control

KM-3L-4-OpenWorld: Change

Management
= Key:
= Reconfiguration controller module.
= Output:
= New system configuration. =« Actions:
« Input: = A component is no longer available or degraded.
= System status. = Executes the strategy to find a proper substitute.
. Anew strategy. = Reports new configuration.

= A new component is available for a given service.

= Updates the current system configuration.

KM-3L-4-OpenWorld: Goal Management

Performance Reconfiguration System Workflow
Goals Strategy with
Goal Generator SPE Specification
management A
New Strategy Strategy Request
\/
Change
management
Component
control

KM-3L-4-OpenWorld: Goal Management

= Responsibility: » Output:

= Produce performance aware = Strategy that meets the
reconfiguration strategies. targe

t
" Key performance goal (e.g., response time)
= Strategy generator module.

= Approaches:

= Input:

= The performance goal.
x Library of strategies.

= The workflow specification.

v
Produce the strategy on demand. . The current configuration.

= Discussion point:

3 0 H

eet other goals (e.g., availability, price).

KM-3L-4-OpenWorld

Performance Reconfiguration

System Workflow

Strategy with
Goals
Goal Generator SPE Specification
management A
New Strategy Strategy Request
v
Reconfiguration Reconfiguration Component

Chang ¢ Strategy Controller Diagram
management A

Change Status

Configuration'
Component
control Configuration System Monitor

Workflow

Example (inputs)

<<GaWorkloadEvent>>

{pattern =(open =(interArrivalTime=(exp(500,tu))))}

{1 <<GaAcqStep>>
{acqgRes = CO0,

resUnits=1}

<<PaStep>> ‘
{extOpDemands=$S1provider;
extOpCount=1}

[Call S2]
"1 <<PaStep>>

{extOpDemands=$S2provider;

h

extOpCount=3}
[Call S3 }
<<GaRelStep>>

{relRes = CO,
resUnits=1}

<<PaStep>> ‘
{extOpDemands=$S3provider;
extOpCount=1}

DUDRRERRRR Ty

Example (inputs)

C21

o System 22
C11 O under {C<
development 029

/AS3 Time Table
/O\ | phasel | phase2 | phase3
Cl1 (5,3000) (20,6000)
c21 (10,6000) (70,2000) (250,2000)
C22 (35,6000) (140,4000)
C31 (20,2000) (70,2000)
C32 (30,00)
(MeanServiceTime, MeanSojournTime)

C31 C32

Example (output)

-

-
- —
-~ -

/ <s1,0.77

y

Node

Cll:phasel
C21:phasel
C31l:phasel

A\

N

<s2,0.72>

s2,0.71>

-
—-"’—

Node g
Node , Cll :phase2
C22:phasel
Cll:phase2 sl,after (500) > p
c21:phasel ’ - C31:phasel
C31l:phasel
Node ¢
-7 ’ Cll:phase2
<s51,0.8 C21l:phasel
C32:phasel
Node ,
Cll:phasel
C22:phasel
C31l:phasel Node -
1
<shafter (500 Cll:phasel
! C21 :phase2
<s3,0.81> : C31:phasel
Node , , [<s1,0.80>
Cll:phasel Nodeg
C21l:phasel Cll:phasel
C32:phasel C22:phasel
- » C32:phasel

\ /N S N N

<s2,after (500)>

Example (strategy graph)

» Reconfiguration strategy - directed graph
» Nodes are system configurations

» Edges represent changes of configurations
> Forward edges:
- Replacement of a component.
- Phase change of a component.
- Labels = confidence levels.
- Backward edges:

- Timeouts to bring back the system to a previous
configuration.

Example (15t Step: create initial node)

» Assume each provider works in best mode, i.e.,
minimum mean service time

» Four possible configurations in the example.

Mean response time estimation

C11:phl C21:phl C31:phl 60.5
C11:phi C22:phi C31:phi 177.6
Cl11:phl C21:ph1 C32:phl 72.5
C11:phl C22:phl C31:phl 193.8

= Each configuration parameterizes the Petri net.

= Solve the Petri nets and choose the best
sQliguration.

Exam

ple (Petri net)

gSPN — (N, {)\Slprovidera)\S2provz'de'ra)\S3provide'r})

Res

RequestArrival

—— A\ = 1/500tu

AcqRes,Start_CallSH

S10pDemand
A.S’lpfr'o'v'icler

e

Start_ CallS2
w = 3/4

20pDemand
)‘SQprovz'de'r

S30pDemand
)‘S3provz'der

- _l__=

RelRes,End_CallS3

Call S1

Call S2

Call S3

Example(2ndStep: create adjacent nodes)

» Consider that current

pro

viders can degrade their performance > 3 adjacent nodes
» Nodel (provider one degraded)

> No choice - only one provider

> Solve the Petri net using phaseZ of C11.

- |s the performance goal achieved?

» Node?2 (provider two degraded)

> Alternatives: use C22 or C21 in phaseZ’.

gain four possible configurations.

Example (output)

-

-
- —
-~ -

/ <s1,0.77

y

Node

Cll:phasel
C21:phasel
C31l:phasel

A\

N

<s2,0.72>

s2,0.71>

-
—-"’—

Node g
Node , Cll :phase2
C22:phasel
Cll:phase2 sl,after (500) > p
c21:phasel ’ - C31:phasel
C31l:phasel
Node ¢
-7 ’ Cll:phase2
<s51,0.8 C21l:phasel
C32:phasel
Node ,
Cll:phasel
C22:phasel
C31l:phasel Node -
1
<shafter (500 Cll:phasel
! C21 :phase2
<s3,0.81> : C31:phasel
Node , , [<s1,0.80>
Cll:phasel Nodeg
C21l:phasel Cll:phasel
C32:phasel C22:phasel
- » C32:phasel

\ /N S N N

<s2,after (500)>

Example(3'd Step: Labels)

» Rational:
- Qur confidence in a configuration change.

- Ad-hoc heuristic under the open workload assumption.

» Confidence = Improvement/(Improvement+Lost)
> Impro
ve

ment = RT_source_ch_phase- RT_target (OK reconfiguratic

t = RT_target - RT_source (wrong reconfiguration)

Example (4t" Step: backward edges)

» Rational
- We can perform erroneous reconfigurations.

- So, after a timeout to a state
that performs better:

- ldentify nodes where components perform in their

worst phase.

> |deal timeout? - Future work

Example (output)

<s2,0.72>
_______ Node g
<sl,%§rer(500)> 7 Node | Cll:p:?sei
/ Cl1l:phase2 s1,after (3);CZZ:P ase
’ . C31:phasel
) <s1,0.77 CZ2l:phasel
J C31l:phasel
1
N) Node ¢
y Pt Cl1l:phase2
< . .
Node ‘\ ¥ s1,0.8 C21 :phasel
C32:phasel
Cll:phasel Node ,
C21:phasel
Cll:phasel
C3l:phasel C22:phasel . . ‘
4 <s2,0.71> \ C3l:phasel Node 4
1
<sNafter (560 Cll:phasel
C21 :phase2
<s3,0.81> C31l:phasel
Node ;4 <s1l,0.80>
Cll:phasel Nodeg
C21:phasel Cll:phasel
C32:phasel C22:phasel
______ A C32:phasel
i \

<a? aftrar(500) >

Example (validation)

» We analyzed the system without reconfigurations and

using the components with their best mean response

times—> Response time: 494 tu

» We analyzed the system using the strategy graph >
Response time: 436 tu

» Improvement: 11%

Related works

B [5] Ghezzi & Tamburrelli Predicting
perfo
r
mance properties for open systems with kami”, QoSA, 2009

v Performance evaluation in
open-
w
orld. Assuming components evolving independentely and unpredictably.

» Queuing networks.

» Does not address the problem of generate strategies.

H [10,11,15]
Menascé'

Conclusion

= Original idea

m Introduce a reference architecture from self-managed systems in the
open-world context.

« Contributions

« Adapt KM-3L to open-world software — focuss the Performance
problem.

« Proposal for reconfiguration strategies module.

= Challenge

=« From models to real implementations — software with the ability to
reconfigure itself.

« Problem — run-time Petri net evaluation with exact analysis tecniques.

« Solution — Use Petri net bounds.

| Remark

been implemented.

Thanks!

