
SANDIA REPORT
SAND2012-10431
Unlimited Release
Printed 2012

MiniGhost: A Miniapp for Exploring
Boundary Exchange Strategies Using
Stencil Computations in Scientific
Parallel Computing; Version 1.0

Richard F. Barrett, Courtenay T. Vaughan, and Michael A. Heroux

Center for Computing Research
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-1319

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2012-10431
Unlimited Release

Printed 2012

MiniGhost: A Miniapp for Exploring Boundary
Exchange Strategies Using Stencil Computations in

Scientific Parallel Computing; Version 1.0

A broad range of scientific computation involves the use of difference stencils. In a paral-
lel computing environment, this computation is typically implemented by decomposing the
spacial domain, inducing a “halo exchange” of process-owned boundary data. This approach
adheres to the Bulk Synchronous Parallel (BSP) model. Because commonly available archi-
tectures provide strong inter-node bandwidth relative to latency costs, many codes “bulk
up” these messages by aggregating data into a message as a means of reducing the num-
ber of messages. A renewed focus on non-traditional architectures and architecture features
provides new opportunities for exploring alternatives to this programming approach.

In this report we describe miniGhost, a “miniapp” designed for exploration of the capa-
bilities of current as well as emerging and future architectures within the context of these
stencil-based applications. MiniGhost joins the suite of miniapps developed as part of the
Mantevo project, http://mantevo.org.

3

http://mantevo.org

Acknowledgment

Acknowledgment

The authors thank the DOE ASC program for funding this research.

4

Contents

Executive Summary 9

1 Introduction 11

2 miniGhost 13

2.1 Implementations . 13

2.2 Execution and Verifying Correctness . 16

2.3 Output . 18

2.4 Code description . 18

2.5 Parallel Programming Model . 21

2.6 Peer implementations . 22

2.7 Checkpointing . 22

3 Summary 25

References 26

Appendix

A Code categorization 29

5

List of Figures

1.1 Stencil inter-process communication requirement . 11

2.1 Five point stencil in Fortran . 14

2.2 MiniGhost boundary exchange and computation . 15

2.3 miniGhost code flow diagram . 19

2.4 Sketch of miniGhost boundary exchange . 22

A.1 miniGhost SLOC summary by file . 31

A.2 miniGhost BSPMA SLOC summary by file . 32

6

List of Tables

2.1 Input parameters . 17

2.2 MiniGhost functionality . 20

2.3 MPI functionality employed . 21

2.4 MPI-IO functionality employed for checkpointing . 23

7

8

Executive Summary

A broad range of scientific computation involves the use of difference stencils. In a paral-
lel computing environment, this computation is typically implemented by decomposing the
spacial domain, inducing a “halo exchange” of process-owned boundary data. This approach
adheres to the Bulk Synchronous Parallel (BSP) model. Because commonly available archi-
tectures provide strong inter-node bandwidth relative to latency costs, many codes “bulk
up” these messages by aggregating data into a message as a means of reducing the num-
ber of messages. A renewed focus on non-traditional architectures and architecture features
provides new opportunities for exploring alternatives to this programming approach.

In this report we describe miniGhost, a “miniapp” designed for exploration of the capa-
bilities of current as well as emerging and future architectures within the context of these
stencil-based applications. MiniGhost joins the suite of miniapps developed as part of the
Mantevo project, http://mantevo.org.

Our work is motivated by recent experiences with new node interconnect architectures,
including that used by Cielo [11, 17, 20].

Various experiments involving miniGhost have already been completed, supporting the
value of miniGhost as a proxy for represented applications. Additional experiments have
been defined, with implementations underway. Future reports will describe the outcome
of those experiments, and will also include the definition and use of a performance model
incorporating many issues defined by the DOE exascale codesign efforts [3, 12, 18].

This document is released in support of the initial release of miniGhost. As miniapps are
intended to be modified, additional supporting documentation is expected to be produced.

9

http://mantevo.org

10

Chapter 1

Introduction

A broad range of physical phenomena in science and engineering can be described mathe-
matically using partial differential equations. Determining the solution of these equations
on computers is commonly accomplished by mapping the continuous equation to a discrete
representation. One such solution technique is the finite differencing method, which lets us
solve the equation using a difference stencil, updating the grid as a function of each point
and its neighbors, presuming some discrete time step. The algorithmic structure of the finite
difference method maps naturally to the parallel processing architecture and single-program
multiple-data (SPMD) programming model. For example, on a regular, structured grid,
O(n2) computation is performed, with nearest neighbor O(n) inter-process communication
requirements.

On parallel processing architectures, these stencil computations require data from neigh-
boring processes. Inter-process communication is typically abstracted into some sort of
functionality that may be loosely described as boundary exchange (likewise also called ghost-
exchange or halo-exchange) This notion of mapping a continuous problem to discrete space
and the inter-process communication requirement induced by spatially decomposing the grid
across parallel processes is illustrated in Figure 1.1.

Figure 1.1. Stencil inter-process communication require-
ment

The left figure shows a partial differential equation (the Poisson equation) described on a
continuous domain, with homogeneous Dirichlet boundary conditions. The discretization of
this problem is shown in the figure on the middle. The right figure illustrates the inter-process
communication requirements when the discretized domain is decomposed across four parallel
processes.

This approach adheres to the bulk-synchronous parallel programming model (BSP [19]),

11

arguably the dominant model for implementing high performance portable parallel processing
scientific applications. As widely available parallel processing architectures focused node in-
terconnect performance on bandwidth (relative to latency), code developers often aggregated
data from various structures into single messages [4]. Although many such applications have
continued to perform well even up to peta-scale [2, 7], the situation appears to be changing
with the push to exascale [1, 18].

In the BSP/message aggregation (BSPMA) model, data from multiple (logical) memory
locations are combined into a user-managed array with other data, then subsequently trans-
mitted to the target process. This step incurs three additional costs, none of which directly
advances the computation: memory utilization (the message buffers), on-node bandwidth
(copies into the buffer), and synchronization (leading up to and including the data transfer).
Further, this model interferes in some sense with the natural mapping of algorithms to pro-
gramming languages in that the code developer must organize computation with the intent
to aggregate and exchange data as a means of maximizing bandwidth and avoiding latency
rather than organizing computation in a manner natural to the algorithm.

A renewed focus on non-traditional architectures and architecture features provides new
opportunities for exploring alternatives to this programming approach. In previous work [17,
20] we saw that codes configured for the BSPMA model realized an evolutionary improve-
ment in performance. However, codes that sent a large number of small messages realized
a significant improvement in performance. This improvement is attributable to the signifi-
cantly increased message injection rate of the node interconnect and supported by the node
architecture, a trend we see continuing as nodes become more powerful and complex.

In order to study the performance characteristics of the BSPMA configuration within
the context of computations widely used across a variety of scientific algorithms, we have
developed a “miniapp”, called miniGhost. As a miniapplication [13], miniGhost is designed
for modification and experimentation. It is an open source, self-contained, stand-alone code,
with a simple build and execution system. It creates an application-specific context for
experimentation, allowing investigation of different programming models and mechanisms,
existing, emerging, and future architectures, and enabling investigation of entirely new al-
gorithmic approaches for achieving effective use of the computing environment within the
context of complex application requirements.

We begin with a discussion of difference stencils, followed by a description of the miniGhost
miniapp, focusing on its computation and communication requirements. We include a dis-
cussion of the implementation, with a description of some MPI semantic options for im-
plementing the boundary exchange. We then describe CTH, an application code for which
miniGhost is intended to serve as a proxy, including a listing of the intentional differences
between miniGhost and the implementation of CTH. Next we present some runtime results
that serve to support the claim that intended connection. We conclude with a summary of
this initial work and a discussion of future work.

12

Chapter 2

miniGhost

Stencil computations form the basis for finite difference, finite volume, and in fact many
other algorithms. The basic idea is to update a value as an average of that value and some
set of neighboring points. In the simplest case, heat diffusing across a homogeneous two
dimensional domain is modeled as the non-weighted averages of the points surrounding the
point to be updated. This can be described using a 5-point stencil defined as

ut+1
i,j,k =

ut
i,j−1,k + ut

i−1,j,k + ut
i,j,k + ut

i+1,j,k + ut
i,j+1,k

5
, for i, j, k = 1, . . . n, for timestep t.

A 9-point stencil would include the (up to four) points diagonally adjacent to

ut
i,j,k : ut

i−1,j−1,k, u
t
i−1,j+1,k, u

t
i+1,j−1,k, and ut

i+1,j+1,k.

A three dimensional domain might need to include neighbors in adjacent two dimensional
“slices”, creating 7-point (analogous to 5-point) stencil or 27-point (analogous to a 9-point)
stencil.

A Fortran implementation of the 5-point stencil shown in Figure 2.1 with the notion of
decomposing across parallel processes illustrated above in Figure 1.1.

This problem definition presumes regular, equally spaced grid points across the global
domain. This greatly simplifies the implementation of the algorithm, allowing us to focus in
on the performance aspects of interest in our experiments.

2.1 Implementations

The basis of miniGhost is the BSPMA implementation described above. Since miniGhost
was originally developed to explore alternative message passing implementations, we include
a variant1, which also uses MPI for parallelization. The three options are:

1Future plans include additional variants.

13

Figure 2.1. Five point stencil in Fortran

This codesegment implements a five point differencing scheme on a three dimen-
sional (NX × NY × NZ) grid. Note the extra (ghost) space allocated for the boundary
condition.

REAL, DIMENSION(0:NX+1,0:NY+1,0:NZ+1) :: X, Y

DO K = 1,NZ

DO J = 1,NY

DO I = 1,NX

X(I,J,K) = &

(Y(I-1,J,K)+ &

Y(I,J-1,K) + Y(I,J,K) + Y(I,J+1,K) + &

Y(I+1,J,K)) &

/ 5.0

END DO

END DO

END DO

Bulk synchronous parallel with message aggregation (BSPMA) Face data is accu-
mulated from each variable into user managed buffers. The buffers are then transmit-
ted to (up to) six neighbor processes, and computation of the selected stencil is applied
to each variable. (This implementation is illustrated in Figure 2.3(a).)

Single variable, aggregated face data (SVAF) This version transmits data as soon as
computation on a variable is completed, face data aggregated. Thus six messages
are transmitted for each variable (up to 40), one to each neighbor, each time step.
(Illustrated in Figure 2.3(b), this eliminates the inner END DO and DO I = 1, NUM VARS

from the BSPMA implementation.)

Skeleton app Although not an “official” implementation, by selecting the “no stencil”
option (see Table 2.1), miniGhost runs in pure communication mode, based on the
above configurations. This could serve as an interconnect stress test.

Optionally, summation of the (grid) elements for each variable may be computed, inject-
ing collective communication into the execution. The MPI collective MPI ALLREDUCE forms
the global value, adding a runtime stress point typically seen in codes of this sort.

14

Figure 2.2. MiniGhost boundary exchange and computa-
tion

(a) BSPMA

(b) SVAF

15

2.2 Execution and Verifying Correctness

MiniGhost is not configured to solve any particular problem, allowing the user to control
running time, by setting the number of time steps executed. The GRID arrays are loaded
with random values (using the Fortran subroutine RANDOM NUMBER). Because homogeneous
Dirichlet boundary conditions are used, the grid values will eventually become zeros, so
randomly generated source terms (called spikes) can be applied in order to maintain non-zero
computation. Each spike will induce the requested number of time steps to be performed.
That is, if 10 spikes and 50 times steps are requested, each spike will be inserted every 50
time steps, resulting in 50 × 10 = 500 total time steps.

The reference version of a Mantevo miniapp may execute serially, or with parallel pro-
cesses using MPI, optionally including OpenMP threads. In serial mode using the default
settings, miniGhost is run as

% ./miniGhost.x

In MPI mode using the default settings, miniGhost is run as

% mpirun -np 1024 ./miniGhost.x

When using OpenMP with MPI, the number of threads per MPI rank is set using environ-
ment variable OMP NUM THREADS.

Runtime input parameters are listed in Table 2.1, and may also be listed using runtime
input --help, i.e.

% ./miniGhost.x --help

or

% mpirun -np 1024 ./miniGhost.x --help

Correctness is ensured by comparing the current state (the sum of the global domain
values), added to sum of the flux out of the domain, with the initial values. That is, the
sum of each GRID array should be equal to the inserted source term (within some specified
tolerance). The current implementation uses a scaled error check:

SOURCE TOTAL(IVAR) − GRIDSUMIVAR
SOURCE TOTAL(IVAR)

< TOL, for IVAR = 1, . . . , NUM VARS.

16

Table 2.1. Input parameters

∗default setting; See MG OPTIONS.F for list of all parameterized options.

Parameter Description Options

--scaling Parallel scaling configuration
SCALING STRONG

SCALING WEAK∗

--comm method Boundary exchange implementation.
COMM METHOD BSPMA∗

COMM METHOD SVAF

--stencil Stencil to be applied.

STENCIL NONE

STENCIL 2D5PT

STENCIL 2D9PT

STENCIL 3D7PT

STENCIL 3D27PT∗

--nx --ny --nz Grid dimension in (x, y, z) directions.
> 0; 10∗or Global values if strong scaling,

--ndim for nx = ny = nz local values if weak scaling.
--num vars Number of GRID arrays operated on. 1 – 40∗

--percent sum
(Approximate) percentage of variables

0-100; 0∗
summation reduced

--num tsteps Number of time steps iterated. > 0; 10∗

--num spikes Number of source spikes inserted. > 0; 1∗

--npx --npy --npz

Logical processor grid in (x, y, z). > 0; (numpes,1,1)∗or
--npdim for npx = npy = npz

--error tol Error tolerance. 10−error tol

--report diffusion
Write error to stdout

n ≥ 0∗
every n time steps.

--debug grid
Initialize grids to 0,

0 or 1∗
insert heat source in center.

--report perf Reporting options 0∗, 1, 2
--help Lists input parameters, and aborts.

17

The default error tolerance is 10−8 for REAL8 and 10−4 for REAL4. Note that all variables
are checked, each requiring a global summation, which can significantly impact execution
time.

A special problem is configured to enable easier tracking of the diffusion of values across
the domain. Setting the runtime parameter grid debug to 1 initializes the GRID arrays to
0, inserts a source term in the middle of the global domains, and then tracks the sources as
they propagates throughout the arrays.

2.3 Output

Output is controlled by the command line option report perf. By default it is set to 0,
resulting in the problem configuration and performance results written to a file named
result.yaml, formatted using YAML2. By setting this option to 1, this information is also
written to a text file named result.txt. Setting it to 2 adds per processor communication
times to the result.txt file.

2.4 Code description

MiniGhost is constructed using a modular design, illustrated in Figure 2.3. In particular, the
separation of the stencil computation and boundary exchange communication enables exper-
imentation in a variety of ways. For example, new stencils, adding weights to the stencils, or
alternative MPI functionality could be configured. Significantly different implementations
of the required functionality can also be configured, with some examples described in this
report’s summary, Chapter 3.

MiniGhost is (mostly) implemented using the Fortran programming language3, requiring
at least a Fortran 90 compliant compiler. Parallelism, described in Section 2.5, is enabled
using functionality defined by the MPI specification [15]. Each variable (representing for
example a material state) is stored in a distinct three dimensional Fortran array (named
GRIDx, for x = 1, . . . , 40), across which the stencil is computed using a triply nested DO loop.
Type precision is configurable as either single (four bytes) or double (eight bytes, the default),
managed in module MG CONSTANTS. Pre-processor compiler directives manage the interface
with MPI functionality. That is, MG MPI REAL is set to MPI REAL4 or MPI REAL8, depending
on the precision requested. Most other variables are declared using the default INTEGER or
REAL, unless otherwise required or recommended. For example, timings are determined at
double precision, using MPI Wtime under MPI and the Fortran function SYSTEM CLOCK for
serial execution. Accumulation of profiling data could require increased precision, so eight

2http://yaml.org
3The main program is configured using the C programming language, which enables more flexible parsing

of command line input.

18

http://yaml.org

byte integers are employed.

Figure 2.3 shows the runtime flow. For the most part, the names refer to the subrou-

Figure 2.3. miniGhost code flow diagram

tine as well as the file name. Where convenient, names are parameterized. For example,
MG STENCIL xDyPT refers to a y-point stencil in x dimensions. Currently this set includes 5-
and 9-point stencils in two dimensions and 7- and 27-point stencils in three dimensions.

A listing of the source code files that compose miniGhost is shown in Table 2.2. Table 2.3
lists the MPI functionality employed by miniGhost. Appendix A provides a breakdown of
the source code. The number of lines of code is magnified by the redundancy employed by
the implementation as a means of clarity as well as the inclusion of several options to the
basic BSP message aggregation model. The basics are captured in the boundary exchange
and stencil computation procedures. (Note that for the asynchronous versions, these two
functional requirements are combined into a single procedure.)

19

Table 2.2. MiniGhost functionality

Functionality Function Alternatives
MINI GHOST

MG BUFINIT

MG CONSTANTS

MG OPTIONS

MG PROFILING

MG UTILS

Boundary exchange driver DRIVER BSPMA DRIVER SVAF

Boundary exchange
MG BSPMA MG SVAF

MG BSPMA DIAGS MG SVAF DIAGS

Driver for stencil option MG STENCIL

y-point stencil computation in x dimensions MG STENCIL xDyPT

Manages the reduction (sum) across a grid MG SUM GRID

Performs the reduction (sum) across a grid MG ALLREDUCE

Post non-blocking receives MG IRECV

Pack face into message buffer MG PACK

Send boundaries
MG SEND BSPMA

MG SEND SVAF

Message completion MG UNPACK BSPMA MG UNPACK SVAF

Unpack message buffer into GRIDs ghost space MG GET FACE

Captures heat lost to flux.
MG FLUX ACCUMULATE

Correctness check functionality.
Driver main.c

20

Table 2.3. MPI functionality employed

Subroutine Use
MPI IRECV

MPI SEND Core functionality
MPI WAITANY

MPI ALLREDUCE

MPI ISEND Optional Core functionality
MPI RECV

MPI ABORT

MPI BCAST

MPI COMM DUP

MPI COMM RANK

MPI COMM SIZE
Support functionality

MPI ERRHANDLER SET

MPI INIT

MPI GATHER

MPI FINALIZE

MPI REDUCE

2.5 Parallel Programming Model

MiniGhost is configured using the Single Program Multiple Data (SPMD) parallel pro-
gramming model, with parallelism enabled using functionality defined in the MPI speci-
fication [15]. MPI provides a wealth of mechanisms and configurations for point-to-point
interprocess communication. Our choice is motivated by that employed by the widest num-
ber of applications in our experience, reinforced by discussions with many MPI implementers.
Here, non-blocking receives for all communication partners are posted, followed by all non-
blocking sends, followed by completion of these procedures as a whole. Sends are preceded
by data copies into message buffers where needed; upon completion, receives are followed
by unpacking of data into appropriate data structures where needed. Figure 2.4 illustrates
the idea with a code fragment. We anticipate that different configurations might result in
meaningfully different (and perhaps better) performance on different platforms with different
MPI implementations, an issue we intend to explore as a general study using this and other
miniapps.

The OpenMP implementation explicitly enables processor and memory affinity using an
explicit first touch algorithm when initializing the GRIDx arrays. Parallel loops are enabled in
the stencil computations, summation across the GRIDx arrays, and the packing and unpacking
of the halos.

21

Figure 2.4. Sketch of miniGhost boundary exchange

DO I = 1, NUM RECVS

CALL MPI IRECV (. . ., MSG REQ(I), . . .)

END DO

! Perhaps some buffer packing

DO I = 1, NUM SENDS

CALL MPI ISEND (. . ., MSG REQ(I+NUM RECVS), . . .)

END DO

DO I = 1, NUM RECVS + NUM SENDS

CALL MPI WAITANY (NUM RECVS + NUM SENDS, MSG REQ, IWHICH, ISTAT, IERR)

IF (IWHICH <= NUM RECVS) THEN

! Perhaps some unbuffer packing

! else completed send, no action required.

END IF

END DO

2.6 Peer implementations

Mantevo miniapps are designed to serve as a tractable means of describing key performance
issues within the context of large scale scientific and engineering application codes. As such,
they are purposely written using the most ubiquitous languages (C, C++, Fortran) and
parallel programming mechanism (MPI) with an option to use OpenMP [10] within a node,
providing what we refer to as the reference implementation. This provides a means for
exploring alternative, emerging and future architectures. The current distribution includes
support for the OpenACC version 1.0 specification4. We anticipate implementations based on
Fortran co-arrays, as well as alternative and developing programming models and languages,
such as Chapel [8] and X10 [9], and perhaps some functional languages. We also anticipate
developing an implementation based on the C programming language.

2.7 Checkpointing

Checkpointing is a common resilience technique used to recover from program or system
failures. A checkpoint contains enough program state to restart execution from the current
time step as opposed to starting the run from time step zero. Depending on the checkpoint

4http://www.openacc-standard.org/

22

http://www.openacc-standard.org/

Subroutine Use
MPI FILE OPEN

File management
MPI FILE CLOSE

MPI TYPE EXTENT

Derived type construction

MPI TYPE GET EXTENT

MPI TYPE CONTIGUOUS

MPI TYPE CREATE STRUCT

MPI TYPE CREATE SUBARRAY

MPI TYPE COMMIT

MPI TYPE FREE

MPI FILE SET VIEW

Data movement
MPI FILE WRITE

MPI FILE WRITE ALL

MPI FILE READ

MPI FILE READ ALL

Table 2.4. MPI-IO functionality employed for checkpoint-
ing

size and host system performance, checkpointing can be an expensive operation.

MiniGhost includes an MPI-IO based checkpoint module that lets users study checkpoint
performance on targeted platforms. (A list of MPI-IO functionality employed is shown in
Table 2.4.) At the end of every time step, there is an opportunity to checkpoint the current
state of miniGhost. If the checkpoint interval is greater than zero and the current time step
matches the interval, a checkpoint is performed. Each checkpoint appends a small header
plus the problem variables (GRIDx) to the checkpoint file. The first checkpoint has some
additional overhead including file creation and the writing of a global header. At the end
of each checkpoint, a checkpoint counter in the global header is incremented and the file is
closed to ensure a consistent file state.

Checkpoint file I/O is implemented using the parallel I/O API from the MPI 2.2 specifi-
cation [14]. The miniGhost checkpoint module uses MPI derived datatypes to the describe
the relationship between the in-memory data representation and the file representation. The
simplest datatypes are arrays of integers constructed with MPI TYPE CONTIGUOUS. These
datatypes are used to write the list of problem variables active in this run (GRIDS TO SUM).
The active problem variable list is fixed after startup and common to all the PEs, so the
root PE writes the array with MPI FILE WRITE as part of the global header, while the other
PEs are idle. More complicated datatypes for writing the problem variables (GRIDx) are
constructed using MPI TYPE CREATE SUBARRAY. Writing the problem variables requires two
derived datatypes. The first datatype (CP NOGHOST TYPE describes the local in-memory grid
without the ghost cells. Because the ghost cells are copied from other PEs, there is no reason

23

to save the ghost cells. The second datatype (CP TSGRID TYPE is a compound type composed
of CP NOGHOST TYPE elements that describes the distribution of each problem variable across
the PEs. Every PE calls MPI FILE WRITE ALL to write the entire grid to disk. The combina-
tion of these datatypes results in a complete contiguous grid in the checkpoint file without
ghost cells.

24

Chapter 3

Summary

MiniGhost is a miniapp developed within the scope of the Mantevo project. It is designed
to provide a means to explore the Bulk Synchronous Parallel programming model, supple-
mented with message aggregation, in the context of exchanging inter-process boundary data
typically seen in finite difference and finite volume computations. This programming model
is employed across a breadth of science domains, typically for solving partial differential
equations. MiniGhost was inspired by the multi-decades experiences by the authors with
these sorts of parallel programs, and the desire to explore alternative configurations on cur-
rent, emerging, and future computing environments. It also provides a means for exploring
alternative programming languages as well as alternative semantics of MPI.

An alternative boundary communication strategies are included for the boundary ex-
change, designed to explore the capabilities of computer node inter-connects. Additionally,
collective communication may be inserted throughout the time steps, adding an additional
level of realism for many application programs. Further, computation may be “turned off”,
providing a skeleton app capability whereby inter-process communication requirements may
used as a “stress test” to explore inter-connect capabilities external of computation.

A methodology for determining how a miniapp is predictive of a full application is pre-
sented in [5]. Some results from the use of miniGhost within the context of a full application
has been presented in [6].

25

26

References

[1] S. Ahern, S.R. Alam, M.R. Fahey, R. Hartman-Baker, R.F. Barrett, R. Kendall,
D. Kothe, O.E. Messer, R. Mills, R. Sankaran, A. Tharrington, and J.B. White III.
Scientific Application Requirements for Leadership Computing at the Exascale. Tech-
nical Report TM-2007/238, Oak Ridge National Laboratory, December 2007.

[2] S. Alam, R. Barrett, M. Bast, M. R. Fahey, J. Kuehn, C. McCurdy, J. Rogers, P. Roth,
R. Sankaran, J. S. Vetter, P. Worley, and W. Yu. Early Evaluation of IBM BlueGene/P.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages
23:1–23:12, Piscataway, NJ, USA, 2008. IEEE Press.

[3] K. Alvin, R. Brightwell, and S. Dosanjh et al. On the Path to Exascale. International
Journal of Distributed Systems and Technologies, 1(2), 2010.

[4] R.F. Barrett, S. Ahern, M.R. Fahey, R. Hartman-Baker, J.K. Horner, S.W. Poole,
and R. Sankaran. A Taxonomy of MPI-Oriented Usage Models in Parallelized Scientific
Codes. In The International Conference on Software Engineering Research and Practice,
2009.

[5] R.F. Barrett, P.S. Crozier, S.D. Hammond, M.A. Heroux, P.T. Lin, T.G. Trucano, and
C. Vaughan. Summary of Work for ASC L2 Milestone 4465: Characterize the Role of the
Mini-Application in Predicting Key Performance Characteristics of Real Applications.
Technical Report SAND2012-4667, Sandia National Laboratories, 2012. In preparation.

[6] R.F. Barrett, S.D. Hammond, C.T. Vaughan, D.W. Doerfler, M.A. Heroux, J.P. Luit-
jens, and D. Roweth. Navigating An Evolutionary Fast Path to Exascale. In Perfor-
mance Modeling, Benchmarking and Simulation of High Performance Computer Sys-
tems (PMBS12), 2012.

[7] B. Bland. Jaguar: The World’s Most Powerful Computer System. In The 52nd Cray
User Group meeting, 2010.

[8] B.L. Chamberlain, D.Callahan, and H.P. Zima. Parallel Programming and the
Chapel Language. International Journal on High Performance Computer Applications,
21(3):291–312, 2007.

[9] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von Praun,
V. Saraswat, and V. Sarkar. X10: An Object-Oriented Approach to Non-Uniform Clus-
ter Computing. In Proceedings of Object-Oriented Programming, Systems, Languages,
and Applications(OOPSLA), October 2005.

[10] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering, 5(1):46 –55, 1998.

27

[11] D. Doerfler, M. Rajan, C. Nuss, C. Wright, and T. Spelce. Application-Driven Accep-
tance of Cielo, an XE6 Petascale Capability Platform. In Proc. 53rd Cray User Group
Meeting, 2011.

[12] A. Geist and S.S. Dosanjh. IESP Exascale Challenge: Co-Design of Architectures and
Algorithms. Int. J. High Perform. Comput. Appl., 23:401–402, November 2009.

[13] M.A. Heroux, D.W. Doerfler, P.S. Crozier, J.W. Willenbring, H.C. Edwards, A.B.
Williams, M. Rajan, E.R. Keiter, H.K. Thornquist, and R.W. Numrich. Improving
Performance via Mini-applications. Technical Report SAND2009-5574, Sandia National
Laboratories, September 2009. https://software.sandia.gov/mantevo/.

[14] MPI Forum. MPI: A Message Passing Interface Standard, Version 2.2, 2009. http:

//www.mpi-forum.org/docs/mpi22-report.pdf.

[15] MPI Forum. MPI: A Message Passing Interface Standard, Version 3.0, 2012. http:

//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[16] University of Southern California Center for Software Engineering.
CodeCountTMtoolset. www.sunset.usc.edu/research/CODECOUNT, 1998.

[17] M. Rajan, C.T. Vaughan, D.W. Doerfler, R.F. Barrett, P.T. Lin, K.T. Pedretti, and K.S.
Hemmert. Application-driven Analysis of Two Generations of Capability Computing
Platforms: Purple and Cielo. Computation and Concurrency: Practice and Experience,
2012. To appear.

[18] H. Simon, T. Zacharia, and R. Stevens. Modeling and Simulation at the Exascale for
Energy and the Environment: Report on the Advanced Scientific Computing Research
Town Hall Meetings on Simulation and Modeling at the Exascale for Energy, Ecological
Sustainability and Global Security (E3). Technical report, Office of Science, The U.S.
Department of Energy, 2007.

[19] L.G. Valiant. A Bridging Model for Parallel Computation. Commun. ACM, 33:103–111,
August 1990.

[20] C.T. Vaughan, M. Rajan, R.F. Barrett, D.W. Doerfler, and K.T. Pedretti. Investigating
the Impact of the Cielo Cray XE6 Architecture on Scientific Application Codes. In
Workshop on Large Scale Parallel Processing, at the IEEE International Parallel &
Distributed Processing Symposium (IPDPS) Meeting, 2011. SAND 2010-8925C.

28

https://software.sandia.gov/mantevo/
http://www.mpi-forum.org/docs/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
www.sunset.usc.edu/research/CODECOUNT

Appendix A

Code categorization

This section provides a breakdown of the source code, as reported by CodeCount [16]. Cross
referencing to Figure 2.3 should provide a general understanding of the source code for
miniGhost. The distinction between a physical and logical line of code is discussed in the
READ file (USC Read Me-TXT.txt) distributed with the CodeCount package:

PHYSICAL SLOC : The number of physical SLOCs within a source file is defined

to be the sum of the number of physical SLOCs (terminated by a carriage return

or EOLN character) which contain program instructions created by project personnel

and processed into machine code by some combination of preprocessors, compilers,

interpreters, and/of assemblers. It excludes comment cards and unmodified utility

software. It includes job control language (compiler directive), format statements,

and data declarations (data lines). Instructions are defined as lines of code

or card images. Thus, a line containing two or more source statements count as

one physical SLOC; a five line data declaration counts as five physical SLOCs.

The physical SLOC definition was selected due to (1) compatibility with parametric

software cost modeling tools, (2) ability to support software metrics collection,

and (3) programming language syntax independence.

LOGICAL SLOC : The number of logical SLOC within a source file is defined to

be the sum of the number of logical SLOCs classified as compiler directives, data

lines, or executable lines. It excludes comments (whole or embedded) and blank

lines. Thus, a line containing two or more source statements count as multiple

logical SLOCs; a single logical statement that extends over five physical lines

count as one logical SLOC. Specifically, the logical SLOC found within a file

containing software written in the PL/I programming language may be computed by

summing together the count of (1) the number of terminal semicolons, (2) the number

of terminal commas contained within a DECLARE (DCL) statement, and (3) the number

of logical compiler directives that do not terminate with a terminal semicolon,

i.e., JCL directives. The logical SLOC definition was selected due to (1) compatibility

with parametric software cost modeling tools, and (2) ability to support software

metrics collection. The logical SLOC count is susceptible to erroneous output

when the analyzed source code file contains software that uses overloading or

replacement characters for a few key symbols, e.g., ’;’ .

– End quoted text.

29

Table 2.3 above listed the MPI functionality employed by miniGhost. Figure A.1 lists
the Fortran SLOC. Figure A.2 lists the Fortran SLOC required for the BSPMA implemen-
tation. The latter is shown with two caveats. First, a significant amount code is shared
with the SVAF implementation, and second, this includes code needed only by the SVAF
implementation.

File main.c adds 388 physical lines and 264 logical lines.

30

Figure A.1. miniGhost SLOC summary by file

(a) File listings

(b) Summary

31

Figure A.2. miniGhost BSPMA SLOC summary by file

(a) File listings

(b) Summary

32

DISTRIBUTION:

1 MS 1319 Robert A. Ballance, 1422

1 MS 1318 Robert J. Hoekstra, 1424

1 MS 1319 James A. Ang, 1420

1 MS 1322 Bruce A. Hendrickson, 1440

1 MS 1324 Robert W. Leland, 1400

,

1 MS 0899 Technical Library, 9536 (electronic copy)

33

34

v1.37

	Executive Summary
	1 Introduction
	2 miniGhost
	2.1 Implementations
	2.2 Execution and Verifying Correctness
	2.3 Output
	2.4 Code description
	2.5 Parallel Programming Model
	2.6 Peer implementations
	2.7 Checkpointing

	3 Summary
	References
	A Code categorization

