SPEC CPU2006 Memory Footprint

John L. Henning
Sun Microsystems.
Contact john dot henning at acm dot org

Memory Footprint Goal

The nominal goal for memory consumption by SPEC
CPU2006 benchmarks is up to about 900 MB when com-
piled with 32-bit pointers. The 900 MB maxium was chosen
so that a system with 1GB will have about 100MB available
for the operating system and overhead processes. By com-
parison, the goal for SPEC CPU2000 was 200MB [1].

The memory goals are only approximate, because there
are many factors that affect memory consumption. For ex-
ample, some compilers might choose to pad arrays for per-
formance reasons, while others do not. Some operating sys-
tems may allocate single pages of memory as they are
touched, while others allocate larger regions earlier. The
choice of page sizes may cause memory to be conserved or
wasted. Perhaps most significantly, if the benchmarks are
compiled for 64-bit pointers, memory consumption can be
significantly higher than with 32-bit pointers.

Metrics

The observed memory footprint also depends on which
metrics are used in the observation. This paper looks at two
metrics commonly available with the Unix "ps" command:

SPECint2000

Rss vsz
164.9zip 188 188
175.vpr 44 45
176.gcc 148 149
181.mcf 100 101
186.crafty 7 9
197 .parser 32 37
252.eon 7 11
253.perlbmk 120 121
254.gap 200 201
255.vortex 96 97
256.bzip2 192 192
300.twolf 6 9

® vsz - the virtual size, or total address space
® rss - the resident set size, or actual allocated physi-
cal memory.
Related papers discuss effects of differing page sizes [2] and
memory locations that are not merely allocated, but also ac-
tually used by the code [3].

CPU2000 vs. CPU2006 rss and vsz

The tables below show virtual and resident sizes for
both SPEC CPU2000 and SPEC CPU2006. The bench-
marks were compiled using the Sun Studio 11 compiler set.
The tuning used 32-bit pointers and "-fast -xpagesize=4M".

The benchmaks were run on a Sun Blade 2000 system
with the Solaris 10 operatiing system, UltraSPARC-III+ pro-
cessors, and 8GB physical memory. Memory usage was ob-
served with 'ps -o rss,vsz' every 5 seconds. The reported
values are the maximums seen for each benchmark.

In the far right column, CPU2006 benchmarks marked
“(s)” are stable in their memory requirements. These bench-
marks grow quickly to the listed sizes, and remain there.

SPECint2006

rss vsz
400.perlbench 580 581
401.bzip2 856 856
403.gcc 932 933
429.mcf 844 845 (s)
445.gobmk 28 29
456.hmmer 60 61
458.sjeng 180 180 (s)
462.libquantum 104 105
464.h264ref 68 69
471.omnetpp 121 122
473.astar 313 314
483.xalancbmk 340 342

Table 1: Integer benchmarks memory usage (MB)

SPECfp2000

SPECfp2006

rss vsz
410.bwaves 881 894 (s)
416.gamess 39 670
433.milc 676 677
434.zeusmp 525 1138 (s)
435.gromacs 25 38 (s)
436.cactusADM 879 1018 (s)
437 leslie3d 129 142 (s)
444 .namd 53 54 (s)
447 dealll 564 566
450.soplex 457 626
453.povray 9 10 (s)
454 calculix 216 230
459.GemsFDTD 838 850 (s)
465.tonto 47 65
470.lbm 416 417 (s)
481.wrf 701 718
482.sphinx3 48 49 (s)

Table 2: Floating point benchmark memory usage (MB)

rss vsz
168.wupwise 185 200
171.swim 201 216
172.mgrid 61 76
173.applu 196 212
177.mesa 20 29
178.galgel 129 174
179.art 8 9
183.equake 48 49
187 .facerec 61 76
188.ammp 20 21
189.lucas 149 164
191.fma3d 112 128
200.sixtrack 64 84
301.apsi 198 212

Observations

From the above tables, it can be noted that:

(a) About half of the CPU2006 benchmarks are larger
than the maximum allowed for CPU2000 (200MB)

(b) All of the SPECint2006 benchmarks, and about half
of the SPECfp2006 benchmarks, have resident and virtual
sizes that are close to each other.

(¢) The benchmark with the largest ratio between virtu-
al and physical memory is 416.gamess, which allocates a
large area of memory at startup, and then manages its own
memory use internally during execution.

(d) Only one benchmark exceeds 900MB for its resi-
dent size, namely 403.gcc, which grows to 932MB. Approx-
imately 7% of the 'ps' observations during the run of 403.gcc
showed sizes over 900MB. See the graph of 403.gcc memo-
ry consumption vs. time later in this report.

(e) 434.zeusmp allocates 1138MB of virtual memory,
but the resident size is only 525MB. The difference is due to
a group of arrays that the setup routines allocate in COM-
MON blocks, /rado/ and /radr/, but which are not actually
used. Because the pages are never written, the Solaris oper-
ating system never allocates physical memory for them.

(f) 436.cactusADM also allocates more than 900MB of
virtual memory, while staying under 900MB of physical
memory. In this case, the difference is due to virtual memo-
ry padding added by the C setup routines. The padding is
not touched by the Fortran routines that consume most of the
CPU time.

The routine SetupCache.c goes to considerable trouble
to try to avoid cache conflicts for the many arrays that are
used by the program, adding 8 MB of padding, plus an addi-
tional smaller pad, so that the virtual addresses of the start of
each array end up on different physical cache lines.

Many real-world scientific codes attempt to be cache-
friendly, as do many other SPEC benchmarks; but 436.cac-
tusADM is probably the first SPEC CPU benchmark to go to
so much trouble to influence array starting addresses. Al-
though it could be argued that such attempts should be tuned
to each platform where a program is to be run, it appears that
the particular padding amounts chosen by the benchmark are
reasonably harmless on several tested platforms.

(g) Finally, it is perhaps worth emphasizing that memo-
ry measurements differ depending on systems and methods.
If one compares the CPU2000 columns above to [1], there
are differences, even though the same author used the same
method (ps -ef -o rss,vsz). The most striking difference is for
181.mcf, which required nearly twice as much memory in
study [1] than it does for the system tested here, because [1]
used 64-bit pointers. Differences can also be observed when
comparing the rss/vsz statistics between this paper vs. both
[2] and [3], notably for 434.zeusmp and 436.cactusADM.
On the IBM system, the extra virtual memory discussed
above is not observed.

Integer benchmarks that vary over time —
Part 1

The tables above noted that some benchmarks are (s)ta-
ble in their memory requirements. Other benchmarks vary in
their memory requirements over time, and are shown in this
and succeeding sections in graphic form. All graphs use the
same conventions: the Y axis is the number of MB, and the
X axis is time. One point is plotted for each of the 5-second
interval observations.

1000 + 400.peribench
900 +

800 +
700 +
600 +
500 -
400 -
300 -

——VszIrss

401.bzip2

——Vszlrss

403.gcc

——vs2zIrss

This section shows the 5 integer benchmarks that vary
over time. For each of the benchmarks shown on this page,
vsz and rss are indistinguishable at the scale shown here, i.e.
1000MB as the maximum Y value.

From the graphs, it is apparent that some benchmarks
are invoked multiple times during the course of a run. For
example, the description for 403.gcc says that it compiles 9
programs [4], and the eye can pick out about 9 different lev-
els of memory consumption as it does so.

1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300
200 -
100 -

0

473.astar vsZrss

1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

0

483.xalancbmk
—vszIrss

Integer benchmarks that vary over time
- Part 2

The integer benchmarks shown in this section vary
over time, but the variation is too small to be shown at the
same scale as the previous section. Therefore, these are
shown rescaled

B0 e

25r ' r— '

20 +

15 +

10 - 445.gobmk
RESCALED

70 +

456.hmmer
RESCALED

20 +

10 +

100 +

80 +

60 +

40 +

o0 | 462libquantum
RESCALED

70 |
60 -
50 -
40 -
30 {1

20 +

120

100

80

60

40

20

464.h264ref
RESCALED
S ------- vsz

471.omnetpp
RESCALED

Floating Point Benchmarks that Vary Over
Time — Part 1

The floating point benchmarks shown in this section
are all graphed on the same scale.

1000
900 |
800 |
700 -

600 |-

500 -

400 +

300 +

200 |-

100 +

416.gamess

433.milc vsZrss

447.dealll

——vsZrss

1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 A
100

1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

1000 -
900 -
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

r 450.soplex
| rss ------- vsz
r 454.calculix
| rss ------- vsz
| perrriessoersiisoeiiiiosesiiiiisoiiiiie
481.wrf
rss ------- VsZ

Floating Point Benchmarks that vary over
time —part 2

Finally, the floating point benchmarks shown in this
section have been rescaled for ease of viewing. Note that
416.gamess is shown in both the previous section and this

section, because its rss behavior is so different from its vsz
behavior.

50
45 |
40 + -
35 L - Il
30 +
25 |
20 +
15 +
10 |
5 1+
0 L

416.gamess
RESCALED

rss

Summary

Memory usage for the SPEC CPU2006 benchmarks is
summarized both in tabular form and, for benchmarks that
vary over time, in graphic form. The metrics used are from
the Solaris ‘ps’ utility; other metrics would produce different
results.

Acknowledgments

Thank you to Peter Farkas, Geetha Vallabhaneni, and
Joel Williamson for contributions to the analysis of the
benchmark memory consumption.

70 -

60 -

......

50 -

40 -

465.tonto
RESCALED

20

References

[1] John L. Henning, “SPEC CPU2000 Memory Footprint”,
www.spec.org/cpu2000/analysis/memory

[2] Wendy Korn and Moon S. Chang, “SPEC CPU2006
Sensitivity to Memory Page Sizes”, Computer Architec-
ture News, Volume 35, No. 1, March 2007.

[3] Darryl Gove, “SPEC CPU2006 Working Set Size”,
Computer Architecture News, Volume 35, No. 1, March
2007.

[4] SPEC’s benchmark descriptions are
www.spec.org/cpu2006

posted at

http://www.spec.org/cpu2006
http://www.spec.org/cpu2000/analysis/memory

	Memory Footprint Goal
	Metrics
	CPU2000 vs. CPU2006 rss and vsz
	Observations
	Integer benchmarks that vary over time – Part 1
	
	Integer benchmarks that vary over time
– Part 2
	Floating Point Benchmarks that Vary Over Time – Part 1
	
	Floating Point Benchmarks that vary over time –part 2
	Summary
	Acknowledgments
	References

