Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3104)

- **SPECrat2017_fp_base** = 46.0
- **SPECrat2017_fp_peak** = 47.0

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>12</td>
<td>36.7</td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>12</td>
<td>26.4</td>
<td>36.9</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>12</td>
<td>33.6</td>
<td>42.7</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>12</td>
<td>34.1</td>
<td>50.0</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>12</td>
<td>49.1</td>
<td></td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>12</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>12</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>12</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>12</td>
<td>29.9</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>12</td>
<td>56.4</td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>12</td>
<td>41.9</td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>12</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>12</td>
<td>35.1</td>
<td></td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name**: Intel Xeon Bronze 3104
- **Max MHz.**: 1700
- **Nominal**: 1700
- **Enabled**: 12 cores, 2 chips
- **Orderable**: 1.2 chips
- **Cache L1**: 32 KB I + 32 KB D on chip per core
- **L2**: 1 MB I+D on chip per core
- **L3**: 8.25 MB I+D on chip per chip
- **Memory**: 384 GB (24 x 16 GB 2Rx8 PC4-2666V-R, running at 2133)
- **Storage**: 1 x 1200 GB SAS, 10000 RPM
- **Other**: None

Software

- **OS**: Red Hat Enterprise Linux Server release 7.3 (Maipo)
- **Compiler**: C/C++: Version 18.0.0.128 of Intel C/C++ Compiler for Linux;

- **Parallel**: No
- **Firmware**: Version 0.31 Released Sep-2017
- **File System**: xfs
- **System State**: Run level 3 (multi-user)
- **Base Pointers**: 64-bit
- **Peak Pointers**: 64-bit
- **Other**: None
Huawei CH121 V5 (Intel Xeon Bronze 3104)

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>12</td>
<td>519</td>
<td>232</td>
<td>521</td>
<td>231</td>
<td>518</td>
<td>232</td>
<td>12</td>
<td>519</td>
<td>232</td>
<td>520</td>
<td>232</td>
<td>520</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>12</td>
<td>414</td>
<td>36.7</td>
<td>414</td>
<td>36.7</td>
<td>414</td>
<td>36.7</td>
<td>12</td>
<td>414</td>
<td>36.7</td>
<td>414</td>
<td>36.7</td>
<td>414</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>12</td>
<td>432</td>
<td>26.4</td>
<td>432</td>
<td>26.4</td>
<td>453</td>
<td>25.1</td>
<td>12</td>
<td>445</td>
<td>25.6</td>
<td>428</td>
<td>26.6</td>
<td>426</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>12</td>
<td>935</td>
<td>33.6</td>
<td>936</td>
<td>33.6</td>
<td>934</td>
<td>33.6</td>
<td>12</td>
<td>924</td>
<td>34.0</td>
<td>919</td>
<td>34.1</td>
<td>922</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>12</td>
<td>656</td>
<td>42.7</td>
<td>655</td>
<td>42.8</td>
<td>657</td>
<td>42.7</td>
<td>12</td>
<td>569</td>
<td>49.2</td>
<td>570</td>
<td>49.1</td>
<td>571</td>
</tr>
<tr>
<td>519.lblm_r</td>
<td>12</td>
<td>214</td>
<td>59.0</td>
<td>215</td>
<td>58.9</td>
<td>214</td>
<td>59.0</td>
<td>12</td>
<td>214</td>
<td>59.0</td>
<td>215</td>
<td>58.9</td>
<td>214</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>12</td>
<td>638</td>
<td>42.2</td>
<td>631</td>
<td>42.6</td>
<td>639</td>
<td>42.1</td>
<td>12</td>
<td>615</td>
<td>43.7</td>
<td>612</td>
<td>43.9</td>
<td>608</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>12</td>
<td>530</td>
<td>34.5</td>
<td>530</td>
<td>34.5</td>
<td>531</td>
<td>34.4</td>
<td>12</td>
<td>531</td>
<td>34.4</td>
<td>530</td>
<td>34.5</td>
<td>530</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>12</td>
<td>702</td>
<td>29.9</td>
<td>703</td>
<td>29.9</td>
<td>702</td>
<td>29.9</td>
<td>12</td>
<td>702</td>
<td>29.9</td>
<td>703</td>
<td>29.9</td>
<td>702</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>12</td>
<td>532</td>
<td>56.1</td>
<td>527</td>
<td>56.6</td>
<td>529</td>
<td>56.4</td>
<td>12</td>
<td>526</td>
<td>56.7</td>
<td>528</td>
<td>56.5</td>
<td>532</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>12</td>
<td>487</td>
<td>41.5</td>
<td>487</td>
<td>41.5</td>
<td>487</td>
<td>41.4</td>
<td>12</td>
<td>482</td>
<td>41.9</td>
<td>482</td>
<td>41.9</td>
<td>482</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>12</td>
<td>757</td>
<td>61.8</td>
<td>757</td>
<td>61.7</td>
<td>756</td>
<td>61.9</td>
<td>12</td>
<td>756</td>
<td>61.9</td>
<td>757</td>
<td>61.7</td>
<td>755</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>12</td>
<td>543</td>
<td>35.1</td>
<td>542</td>
<td>35.2</td>
<td>545</td>
<td>35.0</td>
<td>12</td>
<td>510</td>
<td>37.4</td>
<td>512</td>
<td>37.2</td>
<td>516</td>
</tr>
</tbody>
</table>

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor.

For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"

General Notes

Environment variables set by runcpu before the start of the run:

```
```

Binaries compiled on a system with 1x Intel Core i7-4790 CPU + 32GB RAM

memory using Redhat Enterprise Linux 7.4

Transparent Huge Pages enabled by default

Prior to runcpu invocation

Filesystem page cache synced and cleared with:

```
sync; echo 3 > /proc/sys/vm/drop_caches
```

runcpu command invoked through numactl i.e.:

numactl --interleave=all runcpu <etc>

No: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)

(Continued on next page)
Huawei CH121 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.0</td>
<td>47.0</td>
</tr>
</tbody>
</table>

| Copyright 2017-2018 Standard Performance Evaluation Corporation |

General Notes (Continued)

No: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.

No: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

This benchmark result is intended to provide perspective on past performance using the historical hardware and/or software described on this result page.

The system as described on this result page was formerly generally available. At the time of this publication, it may not be shipping, and/or may not be supported, and/or may fail to meet other tests of General Availability described in the SPEC OSG Policy document, http://www.spec.org/osg/policy.html

This measured result may not be representative of the result that would be measured were this benchmark run with hardware and software available as of the publication date.

Platform Notes

BIOS configuration:
- Power Policy Set to Performance
- XPT Prefetch Set to Enabled
- Sysinfo program `/spec2017/bin/sysinfo`
- Rev: r5797 of 2017-06-14 96c45e4568ad54c135fd618bccc091c0f running on localhost.localdomain Thu Jan 11 23:09:28 2018

SUT (System Under Test) info as seen by some common utilities.

For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From `/proc/cpuinfo`

- model name : Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
- 2 "physical id"s (chips)
- 12 "processors"
- cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from `/proc/cpuinfo` might not be reliable. Use with caution.)
 - cpu cores : 6
 - siblings : 6
 - physical 0: cores 0 1 2 3 4 5
 - physical 1: cores 0 1 2 3 4 5

From `lscpu`:
- Architecture: x86_64

(Continued on next page)
Huawei
Huawei CH121 V5 (Intel Xeon Bronze 3104)

SPECrate2017_fp_peak = 47.0
SPECrate2017_fp_base = 46.0

CPU2017 License: 3175 Test Date: Jan-2018
Test Sponsor: Huawei Hardware Availability: Jul-2017
Tested by: Huawei Software Availability: Sep-2017

Platform Notes (Continued)

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
Stepping: 4
CPU MHz: 1700.000
BogoMIPS: 3405.02
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 8448K
NUMA node0 CPU(s): 0-5
NUMA node1 CPU(s): 6-11

/cache/cpustat cache data
cache size : 8448 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5
node 0 size: 194709 MB
node 0 free: 189403 MB
node 1 cpus: 6 7 8 9 10 11
node 1 size: 196608 MB
node 1 free: 191561 MB
node distances:
node 0 1
0: 10 21
1: 21 10

From /proc/meminfo
MemTotal: 394145208 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
os-release:

(Continued on next page)
Huawei
Huawei CH121 V5 (Intel Xeon Bronze 3104)

SPECrate2017_fp_base = 46.0
SPECrate2017_fp_peak = 47.0

Platform Notes (Continued)

NAME="Red Hat Enterprise Linux Server"
VERSION="7.3 (Maipo)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="7.3"
PRETTY_NAME="Red Hat Enterprise Linux Server 7.3 (Maipo)"
ANSI_COLOR="0;31"
CPE_NAME="cpe:/o:redhat:enterprise_linux:7.3:GA:server"
redhat-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)
system-release: Red Hat Enterprise Linux Server release 7.3 (Maipo)

uname -a:
Linux localhost.localdomain 3.10.0-514.el7.x86_64 #1 SMP Wed Oct 19 11:24:13 EDT 2016
x86_64 x86_64 x86_64 GNU/Linux

run-level 3 Jan 10 04:01

SPEC is set to: /spec2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sda2 xfs 859G 50G 810G 6% /

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMI BIOS" standard.
BIOS INSYDE Corp. 0.31 09/29/2017
Memory:
24x Samsung M393A2K43BB1-CTD 16 GB 2 rank 2666, configured at 2133

(End of data from sysinfo program)

Compiler Version Notes

==
 CC 519.lbm_r(base) 538.imagick_r(base, peak) 544.nab_r(base)
==
 icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

==
 CC 519.lbm_r(peak) 544.nab_r(peak)
==
 icc (ICC) 18.0.0 20170811
Copyright (C) 1985-2017 Intel Corporation. All rights reserved.

(Continued on next page)
Huawei CH121 V5 (Intel Xeon Bronze 3104)

<table>
<thead>
<tr>
<th>SPECrate2017_fp_base</th>
<th>SPECrate2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.0</td>
<td>47.0</td>
</tr>
</tbody>
</table>

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jan-2018
Tested by: Huawei
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Compiler Version Notes (Continued)

```plaintext
<table>
<thead>
<tr>
<th>Compiler</th>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>icpc</td>
<td>18.0.0</td>
<td>20170811</td>
<td>Copyright (C) 1985-2017 Intel Corporation. All rights reserved.</td>
</tr>
<tr>
<td>icpc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>ifort</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icpc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>ifort</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icpc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>ifort</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
</tbody>
</table>
```

(Continued on next page)
Huawei
Huawei CH121 V5 (Intel Xeon Bronze 3104)

Compiler Version Notes (Continued)

<table>
<thead>
<tr>
<th>Compiler</th>
<th>Version</th>
<th>Date</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>icpc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>icc</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
<tr>
<td>ifort</td>
<td>18.0.0</td>
<td>20170811</td>
<td></td>
</tr>
</tbody>
</table>

Base Compiler Invocation

C benchmarks:
- icc

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3104)

 SPEC CPU2017 Floating Point Rate Result

Copyright 2017-2018 Standard Performance Evaluation Corporation

Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3104)

SPECrate2017_fp_base = 46.0
SPECrate2017_fp_peak = 47.0

CPU2017 License: 3175
Test Sponsor: Huawei
Tested by: Huawei

Test Date: Jan-2018
Hardware Availability: Jul-2017
Software Availability: Sep-2017

Base Compiler Invocation (Continued)

C++ benchmarks:
icpc

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using both C and C++:
icpc icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.libm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

C++ benchmarks:
-xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

(Continued on next page)
<table>
<thead>
<tr>
<th>Huawei CH121 V5 (Intel Xeon Bronze 3104)</th>
<th>SPECrate2017_fp_base = 46.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate2017_fp_peak = 47.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU2017 License: 3175</th>
<th>Test Date: Jan-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: Huawei</td>
<td>Hardware Availability: Jul-2017</td>
</tr>
<tr>
<td>Tested by: Huawei</td>
<td>Software Availability: Sep-2017</td>
</tr>
</tbody>
</table>

Base Optimization Flags (Continued)

Fortran benchmarks:
-`-xCORE-AVX2` `-ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte`

Benchmarks using both Fortran and C:
-`-xCORE-AVX2` `-ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte`

Benchmarks using both C and C++:
-`-xCORE-AVX2` `-ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-mem-layout-trans=3`

Benchmarks using Fortran, C, and C++:
-`-xCORE-AVX2` `-ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only`
-`-qopt-mem-layout-trans=3 -nostandard-realloc-lhs -align array32byte`

Base Other Flags

C benchmarks:
-`-m64 -std=c11`

C++ benchmarks:
-`-m64`

Fortran benchmarks:
-`-m64`

Benchmarks using both Fortran and C:
-`-m64 -std=c11`

Benchmarks using both C and C++:
-`-m64 -std=c11`

Benchmarks using Fortran, C, and C++:
-`-m64 -std=c11`

Peak Compiler Invocation

C benchmarks:
-`icc`

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3104)

| SPECrate2017_fp_base = 46.0 |
| SPECrate2017_fp_peak = 47.0 |

CPU2017 License: 3175 Test Date: Jan-2018
Test Sponsor: Huawei Hardware Availability: Jul-2017
Tested by: Huawei Software Availability: Sep-2017

Peak Compiler Invocation (Continued)

C++ benchmarks:
icpc

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icc

Benchmarks using both C and C++:
icpc icc

Benchmarks using Fortran, C, and C++:
icpc icc ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

519.lbmr_r:basepeak = yes

538.imagick_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=3

544.nab_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=3

C++ benchmarks:

-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=3

Fortran benchmarks:

503.bwaves_r: -xCORE-AVX2 -ipo -O3 -no-prec-div -qopt-prefetch -ffinite-math-only -qopt-mem-layout-trans=3

-nostandard-realloc-lhs -align array32byte

(Continued on next page)
Huawei CH121 V5 (Intel Xeon Bronze 3104)

Huawei

SPECrate2017_fp_base = 46.0

SPECrate2017_fp_peak = 47.0

CPU2017 License: 3175
Test Date: Jan-2018
Test Sponsor: Huawei
Hardware Availability: Jul-2017
Tested by: Huawei
Software Availability: Sep-2017

Peak Optimization Flags (Continued)

549.fotonik3d_r: Same as 503.bwaves_r

554.roms_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs
-align array32byte

Benchmarks using both Fortran and C:

521.wrf_r: -prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3 -nostandard-realloc-lhs
-align array32byte

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

-prof-gen(pass 1) -prof-use(pass 2) -ipo -xCORE-AVX2 -O3
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-mem-layout-trans=3

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

Peak Other Flags

C benchmarks:
-m64 -std=c11

C++ benchmarks:
-m64

Fortran benchmarks:
-m64

Benchmarks using both Fortran and C:
-m64 -std=c11

Benchmarks using both C and C++:
-m64 -std=c11

(Continued on next page)
Huawei

Huawei CH121 V5 (Intel Xeon Bronze 3104)

SPECrate2017_fp_base = 46.0
SPECrate2017_fp_peak = 47.0

CPU2017 License: 3175
Test Sponsor: Huawei
Test Date: Jan-2018

Tested by: Huawei
Hardware Availability: Jul-2017

Software Availability: Sep-2017

Peak Other Flags (Continued)

Benchmarks using Fortran, C, and C++:
-m64 -std=c11

The flags files that were used to format this result can be browsed at:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.html
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.7.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Intel-ic18.0-official-linux64.xml
http://www.spec.org/cpu2017/flags/Huawei-Platform-Settings-SKL-V1.7.xml

SPEC is a registered trademark of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Originally published on 2018-02-27.