Hardware

CPU Name: Intel Xeon Gold 6226R
Max MHz: 3900
Nominal: 2900
Enabled: 32 cores, 2 chips, 2 threads/core
Orderable: 1, 2 chip(s)
Cache L1: 32 KB I + 32 KB D on chip per core
L2: 1 MB I+D on chip per core
L3: 22 MB I+D on chip per chip
Other: None
Memory: 384 GB (24 x 16 GB 2Rx8 PC4-2933Y-R)
Storage: 1 x 400 GB SAS SSD, RAID 0
Other: None

Software

OS: SUSE Linux Enterprise Server 15 SP1 (x86_64)
Kernel: 4.12.14-195-default
Compiler: C/C++: Version 19.0.4.227 of Intel C/C++ Compiler Build 20190416 for Linux; Fortran: Version 19.0.4.227 of Intel Fortran Compiler Build 20190416 for Linux
Parallel: No
Firmware: HPE BIOS Version U32 v2.22 (11/13/2019) released Apr-2020
File System: btrfs
System State: Run level 3 (multi-user)
Base Pointers: 64-bit
Peak Pointers: 32/64-bit
Other: jemalloc memory allocator V5.0.1
Power Management: BIOS set to prefer performance at the cost of additional power usage

SPEC CPU®2017 Integer Rate Result

Test赞助商: HPE
Hardware Availability: Apr-2020
Software Availability: Jun-2019

SPECrate®2017_int_base = 214
SPECrate®2017_int_peak = 222

<table>
<thead>
<tr>
<th>Program</th>
<th>Copies</th>
<th>SPECrate®2017_int_base</th>
<th>SPECrate®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>perlbench</td>
<td>64</td>
<td>159</td>
<td>182</td>
</tr>
<tr>
<td>gcc_r</td>
<td>64</td>
<td>172</td>
<td>189</td>
</tr>
<tr>
<td>mcf_r</td>
<td>64</td>
<td>138</td>
<td>138</td>
</tr>
<tr>
<td>omnetpp</td>
<td>64</td>
<td>239</td>
<td>276</td>
</tr>
<tr>
<td>xalancbmk</td>
<td>64</td>
<td>259</td>
<td>443</td>
</tr>
<tr>
<td>x264</td>
<td>64</td>
<td>276</td>
<td>458</td>
</tr>
<tr>
<td>deepsjeng</td>
<td>64</td>
<td>159</td>
<td>182</td>
</tr>
<tr>
<td>leela</td>
<td>64</td>
<td>172</td>
<td>172</td>
</tr>
<tr>
<td>exchange2</td>
<td>64</td>
<td>425</td>
<td>426</td>
</tr>
<tr>
<td>xz_r</td>
<td>64</td>
<td>138</td>
<td>138</td>
</tr>
</tbody>
</table>
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>64</td>
<td>639</td>
<td>159</td>
<td>642</td>
<td>159</td>
<td>644</td>
<td>158</td>
<td>64</td>
<td>563</td>
<td>181</td>
<td>561</td>
<td>182</td>
<td>560</td>
<td>182</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>64</td>
<td>529</td>
<td>171</td>
<td>525</td>
<td>173</td>
<td>528</td>
<td>172</td>
<td>64</td>
<td>456</td>
<td>199</td>
<td>458</td>
<td>198</td>
<td>456</td>
<td>199</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>64</td>
<td>376</td>
<td>275</td>
<td>376</td>
<td>275</td>
<td>378</td>
<td>274</td>
<td>64</td>
<td>376</td>
<td>275</td>
<td>375</td>
<td>276</td>
<td>374</td>
<td>276</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>64</td>
<td>610</td>
<td>138</td>
<td>609</td>
<td>138</td>
<td>611</td>
<td>137</td>
<td>64</td>
<td>611</td>
<td>137</td>
<td>610</td>
<td>138</td>
<td>610</td>
<td>138</td>
</tr>
<tr>
<td>523.xalan_cmk_r</td>
<td>64</td>
<td>283</td>
<td>239</td>
<td>282</td>
<td>239</td>
<td>283</td>
<td>239</td>
<td>64</td>
<td>261</td>
<td>259</td>
<td>261</td>
<td>259</td>
<td>262</td>
<td>258</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>64</td>
<td>253</td>
<td>444</td>
<td>255</td>
<td>439</td>
<td>253</td>
<td>443</td>
<td>64</td>
<td>245</td>
<td>458</td>
<td>244</td>
<td>458</td>
<td>245</td>
<td>458</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>64</td>
<td>404</td>
<td>182</td>
<td>403</td>
<td>182</td>
<td>404</td>
<td>182</td>
<td>64</td>
<td>402</td>
<td>182</td>
<td>403</td>
<td>182</td>
<td>404</td>
<td>181</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>64</td>
<td>617</td>
<td>172</td>
<td>611</td>
<td>174</td>
<td>626</td>
<td>169</td>
<td>64</td>
<td>622</td>
<td>170</td>
<td>622</td>
<td>170</td>
<td>611</td>
<td>174</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>64</td>
<td>394</td>
<td>425</td>
<td>394</td>
<td>425</td>
<td>394</td>
<td>425</td>
<td>64</td>
<td>394</td>
<td>425</td>
<td>393</td>
<td>426</td>
<td>394</td>
<td>426</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>64</td>
<td>502</td>
<td>138</td>
<td>502</td>
<td>138</td>
<td>503</td>
<td>137</td>
<td>64</td>
<td>502</td>
<td>138</td>
<td>502</td>
<td>138</td>
<td>502</td>
<td>138</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor.
For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
 sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/cpu2017/lib/intel64:/cpu2017/lib/ia32:/cpu2017/je5.0.1-32"

General Notes

Binaries compiled on a system with 1x Intel Core i9-7900X CPU + 32GB RAM memory using Redhat Enterprise Linux 7.5
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
General Notes (Continued)

is mitigated in the system as tested and documented. Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration:
Thermal Configuration set to Maximum Cooling
Memory Patrol Scrubbing set to Disabled
LLC Prefetch set to Enabled
LLC Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Workload Profile set to General Throughput Compute
Workload Profile set to Custom
Energy/Performance Bias set to Balanced Performance

Sysinfo program /cpu2017/bin/sysinfo
Rev: r6365 of 2019-08-21 295195f888a3d7ed1e6e46a485a0011
running on linux-9e6o Tue Feb 25 14:18:53 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
 2 "physical id"s (chips)
 64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 16
siblings : 32
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

SPECrate®2017_int_base = 214
SPECrate®2017_int_peak = 222

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
</tr>
<tr>
<td>Tested by:</td>
<td>HPE</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Feb-2020</td>
</tr>
<tr>
<td>Hardware Availability:</td>
<td>Apr-2020</td>
</tr>
<tr>
<td>Software Availability:</td>
<td>Jun-2019</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6
Model: 85
Model name: Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
Stepping: 7
CPU MHz: 2900.000
BogoMIPS: 5800.00
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 1024K
L3 cache: 22528K
NUMA node0 CPU(s): 0-7,32-39
NUMA node1 CPU(s): 8-15,40-47
NUMA node2 CPU(s): 16-23,48-55
NUMA node3 CPU(s): 24-31,56-63
Flags: fpu vme de pse mce sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtsscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_pni ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority etp vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512vd avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsaves xsavec xgetbv1 xsaveas cqm_llc cqm_occup_llc cqm_mbb_total cqm_mbb_local dtherm ida arat pfn pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities

/proc/cpuinfo cache data
cache size: 22528 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 4 nodes (0-3)
 node 0 cpus: 0 1 2 3 4 5 6 7 32 33 34 35 36 37 38 39
 node 0 size: 96330 MB
 node 0 free: 95972 MB
 node 1 cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
 node 1 size: 96764 MB
 node 1 free: 94585 MB
 node 2 cpus: 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55
 node 2 size: 96764 MB
 node 2 free: 96524 MB

(Continued on next page)
SPEC CPU®2017 Integer Rate Result
Copyright 2017-2020 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

SPECrate®2017_int_base = 214
SPECrate®2017_int_peak = 222

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

node 3 cpus: 24 25 26 27 28 29 30 31 56 57 58 59 60 61 62 63
node 3 size: 96763 MB
node 3 free: 96562 MB
node distances:
node 0 1 2 3
 0: 10 21 31 31
 1: 21 10 31 31
 2: 31 31 10 21
 3: 31 31 21 10

From /proc/meminfo
MemTotal: 395902864 kB
HugePages_Total: 0
Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
NAME="SLES"
VERSION="15-SP1"
VERSION_ID="15.1"
PRETTY_NAME="SUSE Linux Enterprise Server 15 SP1"
ID="sles"
ID_LIKE="suse"
ANSI_COLOR="0;32"
CPE_NAME="cpe:/o:suse:sles:15:sp1"

uname -a:
Linux linux-9e6o 4.12.14-195-default #1 SMP Tue May 7 10:55:11 UTC 2019 (8fba516)
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling

run-level 3 Feb 25 14:16

SPEC is set to: /cpu2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/sda2 btrfs 369G 133G 237G 36% /

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECrater®2017_int_base = 214
SPECrater®2017_int_peak = 222

Platform Notes (Continued)

From /sys/devices/virtual/dmi/id
BIOS: HPE U32 11/13/2019
Vendor: HPE
Product: ProLiant DL360 Gen10
Product Family: ProLiant
Serial: MXQ94204PS

Additional information from dmidecode follows. WARNING: Use caution when you interpret
this section. The 'dmidecode' program reads system data which is "intended to allow
hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
Memory:
24x UNKNOWN NOT AVAILABLE 16 GB 2 rank 2933

(End of data from sysinfo program)

Compiler Version Notes

==
C | 502.gcc_r(peak)

Intel(R) C Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak)
525.x264_r(base, peak) 557.xz_r(base, peak)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C | 502.gcc_r(peak)

Intel(R) C Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak)
525.x264_r(base, peak) 557.xz_r(base, peak)

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

SPECrate®2017_int_base = 214
SPECrate®2017_int_peak = 222

Compiler Version Notes (Continued)

Intel(R) C Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C++ | 523.xalancbmk_r(peak)
Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C++ | 520.omnetpp_r(base, peak) 523.xalancbmk_r(base)
 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)
Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C++ | 523.xalancbmk_r(peak)
Intel(R) C++ Intel(R) 64 Compiler for applications running on IA-32, Version
19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
C++ | 520.omnetpp_r(base, peak) 523.xalancbmk_r(base)
 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)
Intel(R) C++ Intel(R) 64 Compiler for applications running on Intel(R) 64,
Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.

==
Fortran | 548.exchange2_r(base, peak)
Intel(R) Fortran Intel(R) 64 Compiler for applications running on Intel(R)
64, Version 19.0.4.227 Build 20190416
Copyright (C) 1985-2019 Intel Corporation. All rights reserved.
SPEC CPU® 2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

<table>
<thead>
<tr>
<th>SPECrate® 2017_int_base</th>
<th>SPECrate® 2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>214</td>
<td>222</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2020
Hardware Availability: Apr-2020
Software Availability: Jun-2019

Base Compiler Invocation

C benchmarks:
```
icc -m64 -std=c11
```

C++ benchmarks:
```
icpc -m64
```

Fortran benchmarks:
```
ifort -m64
```

Base Portability Flags

- 500.perlbench_r -DSPEC_LP64 -DSPEC_LINUX_X64
- 502.gcc_r -DSPEC_LP64
- 505.mcf_r -DSPEC_LP64
- 520.omnetpp_r -DSPEC_LP64
- 523.xalancbmk_r -DSPEC_LP64 -DSPEC_LINUX
- 525.x264_r -DSPEC_LP64
- 531.deepsjeng_r -DSPEC_LP64
- 541.leela_r -DSPEC_LP64
- 548.exchange2_r -DSPEC_LP64
- 557.xz_r -DSPEC_LP64

Base Optimization Flags

C benchmarks:
```
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc
```

C++ benchmarks:
```
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc
```

Fortran benchmarks:
```
-W1,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc
```
Peak Compiler Invocation

C benchmarks (except as noted below):
icc -m64 -std=c11

$icc -m64 -std=c11 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/ia32_lin

C++ benchmarks (except as noted below):
icpc -m64

$icpc -m64 -L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/ia32_lin

Fortran benchmarks:
ifort -m64

Peak Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -D_FILE_OFFSET_BITS=64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -D_FILE_OFFSET_BITS=64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Peak Optimization Flags

C benchmarks:
500.perlbench_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4
-fno-strict-overflow
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

502.gcc_r: -Wl,-z,muldefs -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/jemalloc5.0.1-32/lib -ljemalloc

505.mcf_r: -Wl,-z,muldefs -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
Peak Optimization Flags (Continued)

505.mcf_r (continued):
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

525.x264_r -Wl,-z,muldef s -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

557.xz_r: Same as 505.mcf_r

C++ benchmarks:

520.omnetpp_r -Wl,-z,muldef s -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

523.xalancbmk_r -Wl,-z,muldef s -prof-gen(pass 1) -prof-use(pass 2) -ipo
-xCORE-AVX512 -O3 -no-prec-div -qopt-mem-layout-trans=4
-L/usr/local/je5.0.1-32/lib -ljemalloc

531.deepsjeng_r: Same as 520.omnetpp_r

541.leea_r: Same as 520.omnetpp_r

Fortran benchmarks:
-Wl,-z,muldef s -xCORE-AVX512 -ipo -O3 -no-prec-div
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs -align array32byte
-L/usr/local/IntelCompiler19/compilers_and_libraries_2019.4.227/linux/compiler/lib/intel64
-lqkmalloc

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.2-CLX-revB.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.2-CLX-revB.xml
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL360 Gen10
(2.90 GHz, Intel Xeon Gold 6226R)

SPECrater®2017_int_base = 214
SPECrater®2017_int_peak = 222

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Feb-2020
Hardware Availability: Apr-2020
Software Availability: Jun-2019

SPEC CPU and SPECrater are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.0 on 2020-02-25 15:18:52-0500.