SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate®2017_int_base (178)</th>
<th>SPECrate®2017_int_peak (183)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>32</td>
<td>125</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>32</td>
<td>130</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>32</td>
<td>151</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>32</td>
<td>180</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>32</td>
<td>209</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>32</td>
<td>270</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>32</td>
<td>351</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>32</td>
<td>398</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>32</td>
<td>398</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>32</td>
<td>398</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** AMD EPYC 72F3
- **Max MHz:** 4100
- **Nominal:** 3700
- **Enabled:** 16 cores, 2 chips, 2 threads/core
- **Orderable:** 1, 2 chip(s)
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **L2:** 512 KB I+D on chip per core
- **L3:** 256 MB I+D on chip per chip, 32 MB per core
- **Other:** None
- **Memory:** 2 TB (16 x 128 GB 4Rx4 PC4-3200AA-L)
- **Storage:** 1 x 182 GB SATA SSD, RAID 0
- **Other:** None

Software

- **OS:** Ubuntu 20.04.1 LTS (x86_64)
- **Kernel:** 5.4.0-42-generic
- **Compiler:** C/C++/Fortran: Version 3.0.0 of AOCC
- **Parallel:** No
- **Firmware:** HPE BIOS Version A42 v2.42 04/29/2021 released Apr-2021
- **File System:** ext4
- **System State:** Run level 5 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 32/64-bit
- **Other:** jemalloc: jemalloc memory allocator library v5.1.0
- **Power Management:** BIOS set to prefer performance at the cost of additional power usage
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise

(Test Sponsor: HPE)

ProLiant DL385 Gen10 Plus v2

(3.70 GHz, AMD EPYC 72F3)

CPU2017 License: 3

Test Sponsor: HPE

Tested by: HPE

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>32</td>
<td>409</td>
<td>125</td>
<td>410</td>
<td>124</td>
<td>409</td>
<td>125</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>32</td>
<td>300</td>
<td>151</td>
<td>301</td>
<td>150</td>
<td>301</td>
<td>151</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>32</td>
<td>191</td>
<td>270</td>
<td>189</td>
<td>273</td>
<td>192</td>
<td>270</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>32</td>
<td>423</td>
<td>99.2</td>
<td>409</td>
<td>103</td>
<td>412</td>
<td>102</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>32</td>
<td>161</td>
<td>209</td>
<td>163</td>
<td>207</td>
<td>161</td>
<td>211</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>32</td>
<td>160</td>
<td>351</td>
<td>160</td>
<td>351</td>
<td>160</td>
<td>350</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>32</td>
<td>264</td>
<td>139</td>
<td>263</td>
<td>139</td>
<td>263</td>
<td>139</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>32</td>
<td>365</td>
<td>145</td>
<td>365</td>
<td>145</td>
<td>366</td>
<td>145</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>32</td>
<td>211</td>
<td>398</td>
<td>211</td>
<td>398</td>
<td>211</td>
<td>398</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>32</td>
<td>337</td>
<td>103</td>
<td>339</td>
<td>102</td>
<td>339</td>
<td>102</td>
</tr>
</tbody>
</table>

Specrate®2017_int_base = 178

Specrate®2017_int_peak = 183

Compiler Notes

The AMD64 AOCC Compiler Suite is available at

http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.

'numactl' was used to bind copies to the cores.

See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit

'ulimit -1 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numacll i.e.:

numactl --interleave=all runcpu <etc>

'echo 8 > /proc/sys/vm/dirty_ratio' run as root to limit dirty cache to 8% of memory.

'echo 1 > /proc/sys/vm/swappiness' run as root to limit swap usage to minimum necessary.

'echo 1 > /proc/sys/vm/zone_reclaim_mode' run as root to free node-local memory and avoid remote memory usage.

'sync; echo 3 > /proc/sys/vm/drop_caches' run as root to reset filesystem caches.

'sysctl -w kernel.randomize_va_space=0' run as root to disable address space layout randomization (ASLR) to reduce run-to-run variability.

'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Operating System Notes (Continued)

'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root for peak integer runs and all FP runs to enable Transparent Hugepages (THP).
'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled' run as root for base integer runs to enable THP only on request.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH =
 "/home/cpu2017/amd_rate_aocc300_milan_A_lib/64;/home/cpu2017/amd_rate_aocc300_milan_A_lib/32:"

MALLOC_CONF = "retain:true"

Environment variables set by runcpu during the 523.xalancbmk_r peak run:
MALLOC_CONF = "thp:never"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 7742 CPU + 512GiB Memory using OpenSUSE 15.2

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

jemalloc: configured and built with GCC v4.8.2 in RHEL 7.4 (No options specified)
jemalloc 5.1.0 is available here:
https://github.com/jemalloc/jemalloc/releases/download/5.1.0/jemalloc-5.1.0.tar.bz2

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon May 24 12:46:43 EDT 2021
Submission: cpu2017-20210524-26447.sub

Platform Notes

BIOS Configuration
Workload Profile set to General Throughput Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
Last-Level Cache (LLC) as NUMA Node set to Enabled
NUMA memory domains per socket set to Four memory domains per socket
Thermal Configuration set to Maximum Cooling

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECRate®2017_int_base = 178
SPECRate®2017_int_peak = 183

Test Date: Apr-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

Memory PStates set to Disabled
Workload Profile set to Custom
Infinity Fabric Power Management set to Disabled
Infinity Fabric Performance State set to P0
L2 HW Prefetcher set to Disabled

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6538 of 2020-09-24 e8664e66d2d7080afeaa89d4b38e2f1c
running on dl385g10v2 Wed Apr 1 12:27:45 2020

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 72F3 8-Core Processor
 2 "physical id"s (chips)
 32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 8
 siblings : 16
physical 0: cores 0 1 2 3 4 5 6 7
physical 1: cores 0 1 2 3 4 5 6 7

From lscpu:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 32
On-line CPU(s) list: 0-31
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 2
NUMA node(s): 16
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 72F3 8-Core Processor
Stepping: 1
CPU MHz: 1794.137
BogoMIPS: 7386.52
Virtualization: AMD-V
L1d cache: 512 KiB
L1i cache: 512 KiB
L2 cache: 8 MiB

(Continued on next page)
Platform Notes (Continued)

L3 cache:	512 MiB
NUMA node0 CPU(s):	0,16
NUMA node1 CPU(s):	1,17
NUMA node2 CPU(s):	2,18
NUMA node3 CPU(s):	3,19
NUMA node4 CPU(s):	4,20
NUMA node5 CPU(s):	5,21
NUMA node6 CPU(s):	6,22
NUMA node7 CPU(s):	7,23
NUMA node8 CPU(s):	8,24
NUMA node9 CPU(s):	9,25
NUMA node10 CPU(s):	10,26
NUMA node11 CPU(s):	11,27
NUMA node12 CPU(s):	12,28
NUMA node13 CPU(s):	13,29
NUMA node14 CPU(s):	14,30
NUMA node15 CPU(s):	15,31

Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Full AMD retpoline, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdscrp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_pkg_config svm extapic cr8_legacy abm sse4a misalignsse 3nowprefetch osvw ibs skim nt tce topoext perfctr_core perfctr_nb bprext perfctr_l1d perfctr_l1i perfctr_l2 perfctr_l3 mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsqsgbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occupa llc cqm_mbb_total cqm_mbb_local clzero irperf xsaveprtr wbnoivnd arat npt lbv svm_lock nrp_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca

/proc/cpuinfo cache data
cache size: 512 KB

From numactl --hardware WARNING: a numactl 'node' might or might not correspond to a physical chip.

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Apr-2021
Tested by: HPE
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

available: 16 nodes (0-15)
node 0 cpus: 0 16
node 0 size: 128776 MB
node 0 free: 128667 MB
node 1 cpus: 1 17
node 1 size: 129021 MB
node 1 free: 128934 MB
node 2 cpus: 2 18
node 2 size: 129023 MB
node 2 free: 128930 MB
node 3 cpus: 3 19
node 3 size: 129022 MB
node 3 free: 128942 MB
node 4 cpus: 4 20
node 4 size: 129023 MB
node 4 free: 128947 MB
node 5 cpus: 5 21
node 5 size: 129022 MB
node 5 free: 128941 MB
node 6 cpus: 6 22
node 6 size: 129023 MB
node 6 free: 128947 MB
node 7 cpus: 7 23
node 7 size: 129010 MB
node 7 free: 128927 MB
node 8 cpus: 8 24
node 8 size: 128999 MB
node 8 free: 128917 MB
node 9 cpus: 9 25
node 9 size: 129022 MB
node 9 free: 128948 MB
node 10 cpus: 10 26
node 10 size: 129023 MB
node 10 free: 128932 MB
node 11 cpus: 11 27
node 11 size: 129022 MB
node 11 free: 128941 MB
node 12 cpus: 12 28
node 12 size: 129023 MB
node 12 free: 128950 MB
node 13 cpus: 13 29
node 13 size: 129022 MB
node 13 free: 128950 MB
node 14 cpus: 14 30
node 14 size: 129023 MB
node 14 free: 128867 MB
node 15 cpus: 15 31

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrade®2017_int_base = 178
SPECrade®2017_int_peak = 183

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

node 15 size: 129022 MB
node 15 free: 128934 MB
node distances:

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

From /proc/meminfo
MemTotal: 2113619800 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sbin/tuned-adm active
 Current active profile: throughput-performance
/usr/bin/lsb_release -d
Ubuntu 20.04.1 LTS
From /etc/*release* /etc/*version*
debian_version: bullseye/sid
os-release:
 NAME="Ubuntu"
 VERSION="20.04.1 LTS (Focal Fossa)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 20.04.1 LTS"
 VERSION_ID="20.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"
uname -a:
 Linux dl385g10v2 5.4.0-42-generic #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020 x86_64
 x86_64 x86_64 GNU/Linux

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

Test Date: Apr-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Platform Notes (Continued)

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2018-3639 (Speculative Store Bypass): Mitigation: usercopy/swaps barriers and __user pointer sanitization
CVE-2017-5753 (Spectre variant 1): Mitigation: Full AMD retpoline, IBPB: conditional, IBRS_FW, STIBP: always-on, RSB filling
CVE-2017-5715 (Spectre variant 2):
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 5 Apr 1 12:23
SPEC is set to: /home/cpu2017

Memory:
16x Samsung M386AAG40AM3-CWE 128 GB 4 rank 3200
16x UNKNOWN NOT AVAILABLE

BIOS:
BIOS Vendor: HPE
BIOS Version: A42
BIOS Date: 04/29/2021
BIOS Revision: 2.42
Firmware Revision: 2.40

(End of data from sysinfo program)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrater®2017_int_base = 178
SPECrater®2017_int_peak = 183

CPU2017 License: 3
Test Date: Apr-2021
Test Sponsor: HPE
Hardware Availability: Apr-2021
Tested by: HPE
Software Availability: Mar-2021

Compiler Version Notes

C | 502.gcc_r(peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak)
 | 525.x264_r(base, peak) 557.xz_r(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C | 502.gcc_r(peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak)
 | 525.x264_r(base, peak) 557.xz_r(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C++ | 523.xalancbmk_r(peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

Compiler Version Notes (Continued)

C++
| 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C++
| 523.xalancbmk_r(peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: i386-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

C++
| 520.omnetpp_r(base, peak) 523.xalancbmk_r(base) 531.deepsjeng_r(base, peak) 541.leela_r(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

Fortran
| 548.exchange2_r(base, peak)

AMD clang version 12.0.0 (CLANG: AOCC_3.0.0-Build#78 2020_12_10) (based on LLVM Mirror.Version.12.0.0)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc-compiler-3.0.0/bin

SPEC CPU®2017 Integer Rate Result
Copyright 2017-2022 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPEC®2017_int_base = 178
SPEC®2017_int_peak = 183
SPEC CPU®2017 Integer Rate Result

Copyright 2017-2022 Standard Performance Evaluation Corporation

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

CPU2017 License: 3
Test Sponsor: HPE
Test Date: Apr-2021
Tested by: HPE
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Base Compiler Invocation

C benchmarks:
clang

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Base Portability Flags

C benchmarks:
500.perlbench_r: -DSPEC_LINUX_X64 -DSPEC_LP64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LINUX -DSPEC_LP64
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

C++ benchmarks:

Base Optimization Flags

C benchmarks:
-m64 -Wl,-allow-multiple-definition -Wl,-mllvm -Wl,-enable-licm-vrp
-ffltosubr -Wl,-mllvm -Wl,-region-vectorize
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math
-march=znver3 -fveclib=AMDLIBM -fstruct-layout=5
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-freemap-arrays -mllvm -function-specialize -flvh-function-specialization
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -enable-licm-vrp -mllvm -reduce-array-computations=3 -z muldefs
-landlibm -ljemalloc -lflang -lflangrti

C++ benchmarks:
-m64 -std=c++98 -Wl,-mllvm -Wl,-do-block-reorder=aggressive -flto
-Wl,-mllvm -Wl,-region-vectorize -Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math

(Continued on next page)
Base Optimization Flags (Continued)

C++ benchmarks (continued):
-\texttt{-march=xnver3 -fveclib=AMDLIBM -mllvm -enable-partial-unswitch}
-\texttt{-mllvm -unroll-threshold=100 -finline-aggressive}
-\texttt{-flv-function-specialization -mllvm -loop-unswitch-threshold=200000}
-\texttt{-mllvm -reroll-loops -mllvm -aggressive-loop-unswitch}
-\texttt{-mllvm -extra-vectorizer-passes -mllvm -reduce-array-computations=3}
-\texttt{-mllvm -global-vectorize-slp=true -mllvm -convert-pow-exp-to-int=false}
-\texttt{-z muldefs -mllvm -do-block-reorder=aggressive}
-\texttt{-fvirtual-function-elimination -fvisibility=hidden -lamdlibm}
-\texttt{-ljemalloc -lflang -lflangrti}

Fortran benchmarks:
-\texttt{-m64 -Wl,-mllvm -Wl,-inline-recursion=4}
-\texttt{-Wl,-mllvm -Wl,-lsr-in-nested-loop -Wl,-mllvm -Wl,-enable-iv-split}
-\texttt{-flto -Wl,-mllvm -Wl,-region-vectorize}
-\texttt{-Wl,-mllvm -Wl,-function-specialize}
-\texttt{-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6}
-\texttt{-Wl,-mllvm -Wl,-reduce-array-computations=3 -O3 -ffast-math}
-\texttt{-march=xnver3 -fveclib=AMDLIBM -z muldefs -mllvm -unroll-aggressive}
-\texttt{-mllvm -unroll-threshold=500 -lamdlibm -ljemalloc -lflang -lflangrti}

Base Other Flags

C benchmarks:
-\texttt{-Wno-unused-command-line-argument}

C++ benchmarks:
-\texttt{-Wno-unused-command-line-argument}

Peak Compiler Invocation

C benchmarks:
\texttt{clang}

C++ benchmarks:
\texttt{clang++}

Fortran benchmarks:
\texttt{flang}
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

<table>
<thead>
<tr>
<th>SPECrate®2017_int_base</th>
<th>178</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_int_peak</td>
<td>183</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Peak Portability Flags

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>-DSPEC_LINUX_X64 -DSPEC_LP64</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>-D_FILE_OFFSET_BITS=64</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>523.xalancbmkr</td>
<td>-DSPEC_LINUX -DSPEC_LP64</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>-DSPEC_LP64</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>-DSPEC_LP64</td>
</tr>
</tbody>
</table>

Peak Optimization Flags

C benchmarks:

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>505.mcf_r</td>
<td>basepeak = yes</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>basepeak = yes</td>
</tr>
</tbody>
</table>

(Continued on next page)
Peak Optimization Flags (Continued)

557.xz_r: -m64 -Wl,-allow-multiple-definition
-Wl,-mllvm -Wl,-enable-licm-vrp -flto
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -fstruct-layout=7
-mllvm -unroll-threshold=50 -fremap-arrays
-flv-function-specialization -mllvm -inline-threshold=1000
-mllvm -enable-gvn-hoist -mllvm -global-vectorize-slp=true
-mllvm -function-specialize -mllvm -enable-licm-vrp
-mllvm -reduce-array-computations=3 -lamdlibm -ljemalloc

C++ benchmarks:

520.omnetpp_r: basepeak = yes

523.xalancbmk_r: -m32 -Wl,-mllvm -Wl,-do-block-reorder=aggressive -flto
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -finline-aggressive
-mllvm -unroll-threshold=100 -flv-function-specialization
-mllvm -enable-licm-vrp -mllvm -reroll-loops
-mllvm -aggressive-loop-unswitch
-mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp=true
-mllvm -do-block-reorder=aggressive
-fvirtual-function-elimination -fvisibility=hidden
-ljemalloc

531.deepsjeng_r: basepeak = yes

541.leela_r: -m64 -std=c++98
-Wl,-mllvm -Wl,-do-block-reorder=aggressive -flto
-Wl,-mllvm -Wl,-function-specialize
-Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3 -Ofast
-march=znver3 -fveclib=AMDLIBM -finline-aggressive
-mllvm -unroll-threshold=100 -flv-function-specialization
-mllvm -enable-licm-vrp -mllvm -reroll-loops
-mllvm -aggressive-loop-unswitch
-mllvm -reduce-array-computations=3
-mllvm -global-vectorize-slp=true
-mllvm -do-block-reorder=aggressive
-fvirtual-function-elimination -fvisibility=hidden
-lamdlibm -ljemalloc

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Hewlett Packard Enterprise
ProLiant DL385 Gen10 Plus v2
(3.70 GHz, AMD EPYC 72F3)

SPECrate®2017_int_base = 178
SPECrate®2017_int_peak = 183

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Apr-2021
Hardware Availability: Apr-2021
Software Availability: Mar-2021

Peak Optimization Flags (Continued)

Fortran benchmarks:
548.exchange2_r: basepeak = yes

Peak Other Flags

C benchmarks (except as noted below):
-Wno-unused-command-line-argument

502.gcc_r: -L/usr/lib -Wno-unused-command-line-argument
-L/sppo/bin/cpu2017v115aocc3/amd_rate_aocc300_milan_A_lib/32

C++ benchmarks (except as noted below):
-Wno-unused-command-line-argument

523.xalancbmk_r: -L/usr/lib -Wno-unused-command-line-argument
-L/sppo/bin/cpu2017v115aocc3/amd_rate_aocc300_milan_A_lib/32

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-V1.2-EPYC-revP.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.5 on 2020-04-01 13:27:45-0400.
Report generated on 2022-07-08 13:00:32 by CPU2017 PDF formatter v6442.
Originally published on 2021-06-08.