SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise

(Test Sponsor: HPE)

ProLiant DL110 Gen10 Plus

(2.40 GHz, Intel Xeon Silver 4314)

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>184</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td>87.0</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>76.3</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>32</td>
<td>64.6</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td>131</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>32</td>
<td>116</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td>135</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td>121</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td>129</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td>312</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td>203</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td>92.2</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td>60.0</td>
</tr>
</tbody>
</table>

Hardware

- **CPU Name:** Intel Xeon Silver 4314
- **Max MHz:** 3400
- **Nominal:** 2400
- **Enabled:** 16 cores, 1 chip, 2 threads/core
- **Orderable:** 1 chip
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **L2:** 1.25 MB I+D on chip per core
- **L3:** 24 MB I+D on chip per chip
- **Other:** None
- **Memory:** 512 GB (8 x 64 GB 2Rx4 PC4-3200AA-R, running at 2666)
- **Storage:** 1 x 480 GB NVMe SSD, RAID 0
- **Other:** None

Software

- **OS:** Red Hat Enterprise Linux 8.3 (Ootpa)
 - Kernel 4.18.0-240.el8.x86_64
- **Compiler:**
 - C/C++: Version 2021.1 of Intel oneAPI DPC++/C++ Compiler Build 20201113 for Linux;
 - Fortran: Version 2021.1 of Intel Fortran Compiler Classic Build 20201112 for Linux;
- **Parallel:** None
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** jemalloc memory allocator V5.0.1

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrater®2017_fp_base = 133
SPECrater®2017_fp_peak = 138

<table>
<thead>
<tr>
<th>CPU2017 License:</th>
<th>3</th>
<th>Test Date:</th>
<th>Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor:</td>
<td>HPE</td>
<td>Hardware Availability:</td>
<td>Jun-2021</td>
</tr>
<tr>
<td>Tested by:</td>
<td>HPE</td>
<td>Software Availability:</td>
<td>Jun-2021</td>
</tr>
</tbody>
</table>

Software (Continued)

Power Management: BIOS set to prefer performance at the cost of additional power usage

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>32</td>
<td>1047</td>
<td>306</td>
<td>1048</td>
<td>306</td>
<td>1048</td>
<td>306</td>
<td>1048</td>
<td>306</td>
<td>1048</td>
<td>306</td>
<td>1048</td>
<td>306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>32</td>
<td>221</td>
<td>184</td>
<td>220</td>
<td>184</td>
<td>221</td>
<td>184</td>
<td>220</td>
<td>184</td>
<td>220</td>
<td>184</td>
<td>220</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>508.namd_r</td>
<td>32</td>
<td>349</td>
<td>87.2</td>
<td>349</td>
<td>87.2</td>
<td>349</td>
<td>87.2</td>
<td>349</td>
<td>87.2</td>
<td>349</td>
<td>87.2</td>
<td>349</td>
<td>87.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>510.parem_r</td>
<td>32</td>
<td>1098</td>
<td>76.3</td>
<td>1095</td>
<td>76.4</td>
<td>1099</td>
<td>76.2</td>
<td>16</td>
<td>495</td>
<td>84.6</td>
<td>495</td>
<td>84.6</td>
<td>495</td>
<td>84.6</td>
<td>495</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>32</td>
<td>568</td>
<td>131</td>
<td>568</td>
<td>131</td>
<td>567</td>
<td>132</td>
<td>32</td>
<td>493</td>
<td>151</td>
<td>491</td>
<td>152</td>
<td>493</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>32</td>
<td>531</td>
<td>135</td>
<td>542</td>
<td>132</td>
<td>533</td>
<td>135</td>
<td>32</td>
<td>531</td>
<td>135</td>
<td>542</td>
<td>132</td>
<td>533</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>526.blender_r</td>
<td>32</td>
<td>403</td>
<td>121</td>
<td>403</td>
<td>121</td>
<td>403</td>
<td>121</td>
<td>32</td>
<td>403</td>
<td>121</td>
<td>403</td>
<td>121</td>
<td>403</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>32</td>
<td>434</td>
<td>129</td>
<td>435</td>
<td>129</td>
<td>435</td>
<td>129</td>
<td>32</td>
<td>434</td>
<td>129</td>
<td>435</td>
<td>129</td>
<td>435</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>32</td>
<td>255</td>
<td>312</td>
<td>255</td>
<td>313</td>
<td>255</td>
<td>312</td>
<td>32</td>
<td>255</td>
<td>312</td>
<td>255</td>
<td>313</td>
<td>255</td>
<td>313</td>
<td></td>
</tr>
<tr>
<td>544.nab_r</td>
<td>32</td>
<td>266</td>
<td>203</td>
<td>266</td>
<td>203</td>
<td>265</td>
<td>203</td>
<td>32</td>
<td>263</td>
<td>205</td>
<td>265</td>
<td>203</td>
<td>262</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>32</td>
<td>1351</td>
<td>92.3</td>
<td>1352</td>
<td>92.2</td>
<td>1352</td>
<td>92.2</td>
<td>32</td>
<td>1351</td>
<td>92.3</td>
<td>1352</td>
<td>92.2</td>
<td>1352</td>
<td>92.2</td>
<td></td>
</tr>
<tr>
<td>554.roms_r</td>
<td>32</td>
<td>845</td>
<td>60.2</td>
<td>848</td>
<td>60.0</td>
<td>850</td>
<td>59.8</td>
<td>16</td>
<td>358</td>
<td>70.9</td>
<td>358</td>
<td>71.0</td>
<td>358</td>
<td>71.0</td>
<td></td>
</tr>
</tbody>
</table>

SPECrater®2017_fp_base = 133
SPECrater®2017_fp_peak = 138

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes

The numactl mechanism was used to bind copies to processors. The config file option 'submit' was used to generate numactl commands to bind each copy to a specific processor. For details, please see the config file.

Operating System Notes

Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
```
sync; echo 3 > /proc/sys/vm/drop_caches
```

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/cpu2017/lib/intel64:/cpu2017/je5.0.1-64"
MALLOCONF = "retain:true"
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrate®2017_fp_base = 133
SPECrate®2017_fp_peak = 138

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

General Notes

Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM
memory using Red Hat Enterprise Linux 8.1
runcpu command invoked through numactl i.e.:
umactl --interleave=all runcpu <etc>
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.
jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5, and the system compiler gcc 4.8.5

Submitted by: "Bhatnagar, Prateek" <prateek.bhatnagar@hpe.com>
Submitted: Mon Jun 21 10:34:24 EDT 2021
Submission: cpu2017-20210621-27599.sub

Platform Notes

The system ROM used for this result contains Intel microcode version 0xd0002a0 for
the Intel Xeon Silver 4314 processor.
BIOS Configuration:
Workload Profile set to General Throughput Compute
Memory Patrol Scrubbing set to Disabled
Advanced Memory Protection set to Advanced ECC
Last Level Cache (LLC) Prefetch set to Enabled
Last Level Cache (LLC) Dead Line Allocation set to Disabled
Enhanced Processor Performance set to Enabled
Enhanced Processor Performance Profile set to Aggressive
Thermal Configuration set to Maximum Cooling
Workload Profile set to Custom
DCU Stream Prefetcher set to Disabled
XPT Remote Prefetcher set to Enabled
Energy/Performance Bias set to Balanced Performance

Sysinfo program /cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16a6cafc64d
running on localhost.localdomain Sun Jun 13 14:53:06 2021

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz

(Continued on next page)
Platform Notes (Continued)

1 "physical id"s (chips)
32 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 16
siblings : 32
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From lscpu from util-linux 2.32.1:
Architectures: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31

Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 1
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 106
Model name: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz
Stepping: 6
CPU MHz: 3400.000
BogoMIPS: 4800.00
Virtualization: VT-x
L1d cache: 48K
L1i cache: 32K
L2 cache: 1280K
L3 cache: 24576K
NUMA node0 CPU(s): 0-7,16-23
NUMA node1 CPU(s): 8-15,24-31
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt
tcp mcm mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt
tcp mcm mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic env
tcp mcm mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic env

tcp mcm mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic env
	
tcp mcm mce cx8 apic sep mtrr pge mca cmov
pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp
lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic envt nodepit cpuid
aperfmrperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16
xtrac pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_lm abm 3dnowprefetch pdcm_fault epb cat_13 invpcid_single ssbd
mba ibpb stibp ibrs enhanced tpr_shadow vmx ept pae mce cmov cx16
tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl apic env
Hewlett Packard Enterprise
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrate®2017_fp_base = 133
SPECrate®2017_fp_peak = 138

Platform Notes (Continued)

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
available: 2 nodes (0-1)
node 0 cpus: 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23
node 0 size: 253477 MB
node 0 free: 256990 MB
node 1 cpus: 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31
node 1 size: 253305 MB
node 1 free: 256976 MB
node distances:
node 0 1
0: 10 20
1: 20 10

From /proc/meminfo
MemTotal: 528051652 kB
HugePages_Total: 0
Hugepagesize: 2048 kB
/sbin/tuned-adm active
Current active profile: throughput-performance

From /etc/*release* /etc/*version*
om-release:
NAME="Red Hat Enterprise Linux"
VERSION="8.3 (Ootpa)"
ID="rhel"
ID_LIKE="fedora"
VERSION_ID="8.3"
PLATFORM_ID="platform:el8"
PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
ANSI_COLOR=\"0;31\"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga

uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrate®2017_fp_base = 133
SPECrate®2017_fp_peak = 138

Platform Notes (Continued)

CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swapsgs barriers and __user pointer sanitization
CVE-2017-5715 (Spectre variant 2): Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Jun 13 14:52

SPEC is set to: /cpu2017

Filesystem Type Size Used Avail Use% Mounted on
/dev/nvme1n1p4 xfs 442G 142G 300G 33% /

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL110 Gen10 Plus
Product Family: ProLiant
Serial: T912PP0032

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.

Memory:
8x Micron 36ASF8G72PZ-3G2B2 64 GB 2 rank 3200, configured at 2666

BIOS:
BIOS Vendor: HPE
BIOS Version: U56
BIOS Date: 05/13/2021
BIOS Revision: 1.50
Firmware Revision: 2.40

(End of data from sysinfo program)

Compiler Version Notes

==
<table>
<thead>
<tr>
<th>C</th>
<th>519.lbm_r(base, peak) 538.imagick_r(base, peak)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>544.nab_r(base, peak)</td>
</tr>
</tbody>
</table>
==

(Continued on next page)
Compiler Version Notes (Continued)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++ | 508.namd_r(base, peak) 510.parest_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)

Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)

Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==

(Continued on next page)
Compiler Version Notes (Continued)

C++, C | 511.povray_r(base) 526.blender_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

C++, C, Fortran | 507.cactuBSSN_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran | 503.bwaves_r(base, peak) 549.fotonik3d_r(base, peak) 554.roms_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

Fortran, C | 521.wrf_r(base, peak) 527.cam4_r(base, peak)

Intel(R) Fortran Intel(R) 64 Compiler Classic for applications running on Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrate®2017_fp_base = 133
SPECrate®2017_fp_peak = 138

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
Base Optimization Flags (Continued)

C++ benchmarks:
-`-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto`
-`-mfpmath=sse `-funroll-loops `-qopt-mem-layout-trans=4`
-`-mbranches-within-32B-boundaries -ljemalloc`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Fortran benchmarks:
-`-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div`
-`-qopt-prefetch -ffinite-math-only`
-`-qopt-multiple-gather-scatter-by-shuffles -qopt-mem-layout-trans=4`
-`-nostandard-realloc-lhs -align array32byte -auto`
-`-mbranches-within-32B-boundaries -ljemalloc`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both Fortran and C:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse `-funroll-loops `-qopt-mem-layout-trans=4 -O3 -ipo`
-`-no-prec-div `-qopt-prefetch `-ffinite-math-only`
-`-qopt-multiple-gather-scatter-by-shuffles`
-`-mbranches-within-32B-boundaries -nostandard-realloc-lhs`
-`-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both C and C++:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse `-funroll-loops `-qopt-mem-layout-trans=4`
-`-mbranches-within-32B-boundaries -ljemalloc`
-`-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using Fortran, C, and C++:
-`-w -m64 -std=c11 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math`
-`-flto -mfpmath=sse `-funroll-loops `-qopt-mem-layout-trans=4 -O3`
-`-no-prec-div `-qopt-prefetch `-ffinite-math-only`
-`-qopt-multiple-gather-scatter-by-shuffles`
-`-mbranches-within-32B-boundaries -nostandard-realloc-lhs`
-`-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Peak Compiler Invocation

C benchmarks:
-`icx`

C++ benchmarks:
-`icpx`

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

SPECrater®2017_fp_base = 133
SPECrater®2017_fp_peak = 138

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Jun-2021

Peak Compiler Invocation (Continued)

Fortran benchmarks:
ifort

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:
519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
-Ofast -gopt-mem-layout-trans=4
-fimf-accuracy-bits=14:sqrt
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
508.namd_r: basepeak = yes
510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops
-gopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date: Jun-2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Jun-2021</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Jun-2021</td>
</tr>
</tbody>
</table>

SPECrate®2017_fp_base = 133
SPECrate®2017_fp_peak = 138

Peak Optimization Flags (Continued)

Fortran benchmarks:

503.bwaves_r: basepeak = yes

549.fotonik3d_r: basepeak = yes

554.roms_r: -w -m64 -W1,-z,muldefs -xCORE-AVX512 -03 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs
-align array32byte -auto -mbranches-within-32B-boundaries
-Ijemalloc -L/usr/local/jemalloc64-5.0.1/lib

Benchmarks using both Fortran and C:

521.wrf_r: basepeak = yes

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -03
-ipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revC.html

You can also download the XML flags sources by saving the following links:

http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revC.xml
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL110 Gen10 Plus
(2.40 GHz, Intel Xeon Silver 4314)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base = 133</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECrate®2017_fp_peak = 138</td>
</tr>
</tbody>
</table>

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jun-2021
Hardware Availability: Jun-2021
Software Availability: Jun-2021

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2021-06-13 15:53:06-0400.
Originally published on 2021-07-06.