CPU2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

<table>
<thead>
<tr>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.4</td>
<td>52.9</td>
</tr>
</tbody>
</table>

Hardware

<table>
<thead>
<tr>
<th>Copies</th>
<th>SPECrate®2017_fp_base</th>
<th>SPECrate®2017_fp_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r 12</td>
<td>88.7</td>
<td>89.6</td>
</tr>
<tr>
<td>507.cactuBSSN_r 12</td>
<td>79.7</td>
<td></td>
</tr>
<tr>
<td>508.namd_r 12</td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>510.parest_r 12</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>511.povray_r 12</td>
<td>27.3</td>
<td></td>
</tr>
<tr>
<td>519.lbm_r 12</td>
<td>63.7</td>
<td></td>
</tr>
<tr>
<td>521.wrf_r 12</td>
<td>74.3</td>
<td></td>
</tr>
<tr>
<td>526.blender_r 12</td>
<td>57.5</td>
<td></td>
</tr>
<tr>
<td>527.cam4_r 12</td>
<td>56.1</td>
<td></td>
</tr>
<tr>
<td>538.imagick_r 12</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>544.nab_r 12</td>
<td>98.4</td>
<td></td>
</tr>
<tr>
<td>549.fotonik3d_r 12</td>
<td>27.9</td>
<td></td>
</tr>
<tr>
<td>554.roms_r 12</td>
<td>24.6</td>
<td></td>
</tr>
</tbody>
</table>

Software

| | OS: SUSE Linux Enterprise Server 15 SP3
Kernel 5.3.18-57-default |
| | Compiler: C/C++: Version 2021.1 of Intel oneAPI DPC++/C++
Compiler Build 20201113 for Linux;
Fortran: Version 2021.1 of Intel Fortran Compiler
Classic Build 20201112 for Linux;
C/C++: Version 2021.1 of Intel C/C++ Compiler
Classic Build 20201112 for Linux |
	Parallel: No
	Firmware: HPE BIOS Version U61 v1.54 (01/13/2022) released Jan-2022
	File System: xfs
	System State: Run level 5 (multi-user)
	Base Pointers: 64-bit
	Peak Pointers: 64-bit
	Other: jemalloc memory allocator V5.0.1
	Power Management: BIOS set to prefer performance at the cost of additional power usage

CPU2017 License: 3
Test Sponsor: HPE
Hardware Availability: Jan-2022
Test Date: Mar-2022
Tested by: HPE
Software Availability: Jun-2021
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>503.bwaves_r</td>
<td>12</td>
<td>1356</td>
<td>88.7</td>
<td>1358</td>
<td>88.6</td>
<td>1357</td>
<td>88.7</td>
<td>6</td>
<td>672</td>
<td>89.6</td>
<td>672</td>
<td>89.6</td>
<td>672</td>
</tr>
<tr>
<td>507.cactuBSSN_r</td>
<td>12</td>
<td>191</td>
<td>79.5</td>
<td>190</td>
<td>80.0</td>
<td>191</td>
<td>79.7</td>
<td>12</td>
<td>191</td>
<td>79.5</td>
<td>190</td>
<td>80.0</td>
<td>191</td>
</tr>
<tr>
<td>508.namd_r</td>
<td>12</td>
<td>262</td>
<td>43.4</td>
<td>263</td>
<td>43.4</td>
<td>262</td>
<td>43.5</td>
<td>12</td>
<td>262</td>
<td>43.4</td>
<td>263</td>
<td>43.4</td>
<td>262</td>
</tr>
<tr>
<td>510.parest_r</td>
<td>12</td>
<td>1406</td>
<td>22.3</td>
<td>1393</td>
<td>22.5</td>
<td>1395</td>
<td>22.5</td>
<td>6</td>
<td>575</td>
<td>27.3</td>
<td>575</td>
<td>27.3</td>
<td>580</td>
</tr>
<tr>
<td>511.povray_r</td>
<td>12</td>
<td>440</td>
<td>63.7</td>
<td>439</td>
<td>63.8</td>
<td>441</td>
<td>63.6</td>
<td>12</td>
<td>377</td>
<td>74.3</td>
<td>377</td>
<td>74.4</td>
<td>379</td>
</tr>
<tr>
<td>519.lbm_r</td>
<td>12</td>
<td>409</td>
<td>30.9</td>
<td>409</td>
<td>30.9</td>
<td>409</td>
<td>30.9</td>
<td>12</td>
<td>409</td>
<td>30.9</td>
<td>409</td>
<td>30.9</td>
<td>409</td>
</tr>
<tr>
<td>521.wrf_r</td>
<td>12</td>
<td>679</td>
<td>39.6</td>
<td>669</td>
<td>40.2</td>
<td>668</td>
<td>40.3</td>
<td>12</td>
<td>679</td>
<td>39.6</td>
<td>669</td>
<td>40.2</td>
<td>668</td>
</tr>
<tr>
<td>526.blender_r</td>
<td>12</td>
<td>317</td>
<td>57.6</td>
<td>318</td>
<td>57.5</td>
<td>318</td>
<td>57.5</td>
<td>12</td>
<td>317</td>
<td>57.6</td>
<td>318</td>
<td>57.5</td>
<td>318</td>
</tr>
<tr>
<td>527.cam4_r</td>
<td>12</td>
<td>374</td>
<td>56.1</td>
<td>375</td>
<td>56.0</td>
<td>374</td>
<td>56.1</td>
<td>12</td>
<td>374</td>
<td>56.1</td>
<td>375</td>
<td>56.0</td>
<td>374</td>
</tr>
<tr>
<td>538.imagick_r</td>
<td>12</td>
<td>199</td>
<td>150</td>
<td>200</td>
<td>150</td>
<td>200</td>
<td>149</td>
<td>12</td>
<td>199</td>
<td>150</td>
<td>200</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>544.nab_r</td>
<td>12</td>
<td>208</td>
<td>97.3</td>
<td>208</td>
<td>97.3</td>
<td>207</td>
<td>97.8</td>
<td>12</td>
<td>205</td>
<td>98.4</td>
<td>204</td>
<td>99.2</td>
<td>205</td>
</tr>
<tr>
<td>549.fotonik3d_r</td>
<td>12</td>
<td>1675</td>
<td>27.9</td>
<td>1676</td>
<td>27.9</td>
<td>1672</td>
<td>28.0</td>
<td>12</td>
<td>1675</td>
<td>27.9</td>
<td>1676</td>
<td>27.9</td>
<td>1672</td>
</tr>
<tr>
<td>554.roms_r</td>
<td>12</td>
<td>1008</td>
<td>18.9</td>
<td>1009</td>
<td>18.9</td>
<td>1009</td>
<td>18.9</td>
<td>6</td>
<td>388</td>
<td>24.6</td>
<td>388</td>
<td>24.5</td>
<td>387</td>
</tr>
</tbody>
</table>

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Submit Notes
The config file option 'submit' was used.

Operating System Notes
Stack size set to unlimited using "ulimit -s unlimited"
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3 > /proc/sys/vm/drop_caches

Environment Variables Notes
Environment variables set by runcpu before the start of the run:
LD_LIBRARY_PATH = "/home/cpu2017/lib/intel64:/home/cpu2017/je5.0.1-64"
MALLOC_CONF = "retain:true"

General Notes
Binaries compiled on a system with 1x Intel Core i9-7980XE CPU + 64GB RAM memory using Red Hat Enterprise Linux 8.1
NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.

(Continued on next page)
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

General Notes (Continued)
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration:
Workload Profile set to General Throughput Compute
Thermal Configuration set to Maximum Cooling
Enhanced Processor Performance set to Enabled
Last Level Cache (LLC) prefetch set to Enabled
HW Prefetcher set to Disabled

Sysinfo program /home/cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16aca64d
running on localhost Wed Mar 16 16:25:51 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name: Intel(R) Xeon(R) E-2356G CPU @ 3.20GHz
 1 "physical id"s (chips)
 12 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores: 6
siblings: 12
physical 0: cores 0 1 2 3 4 5

From lscpu from util-linux 2.36.2:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 39 bits physical, 48 bits virtual
CPU(s): 12
On-line CPU(s) list: 0-11
Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 1
NUMA node(s): 1

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPEC CPU®2017 Floating Point Rate Result
Copyright 2017-2022 Standard Performance Evaluation Corporation

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

Vendor ID: GenuineIntel
CPU family: 6
Model: 167
Model name: Intel(R) Xeon(R) E-2356G CPU @ 3.20GHz
Stepping: 1
CPU MHz: 3313.103
BogoMIPS: 6384.00
Virtualization: VT-x
L1d cache: 288 KiB
L1i cache: 192 KiB
L2 cache: 3 MiB
L3 cache: 12 MiB
NUMA node0 CPU(s): 0-11
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssms3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm ablm 3dnowprefetch cpuid_fault epb invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vmmi flexpriority ept vpid ept_ad fs.gsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx avx512f avx512dq rdseed adx smap avx512fma clflushopt intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsaves dtherm ida arat pln pts avx512vbm umip pkup ospe avx512_vbmi2 gfnf vaes vpclmulqdq avx512_vni avx512_bitalg avx512_vpopcntdq rdpid fsrmd_clear flush_l1ld arch_capabilities

From lscpu --cache:
NAME ONE-SIZE ALL-SIZE WAYS TYPE LEVEL SETS PHY-LINE COHERENCY-SIZE
L1d 48K 288K 12 Data 1 64 1 64
L1i 32K 192K 8 Instruction 1 64 1 64
L2 512K 3M 8 Unified 2 1024 1 64
L3 12M 12M 16 Unified 3 12288 1 64

/proc/cpuinfo cache data
cache size : 12288 KB

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
 available: 1 nodes (0)
 node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11
 node 0 size: 128465 MB
 node 0 free: 127418 MB
 node distances:
 node 0
 0: 10

From /proc/meminfo
 MemTotal: 131548904 kB
 HugePages_Total: 0
 Hugepagesize: 2048 kB

From /etc/*release* /etc/*version*
 os-release:
 NAME="SLES"
 VERSION="15-SP3"
 VERSION_ID="15.3"
 PRETTY_NAME="SUSE Linux Enterprise Server 15 SP3"
 ID="sles"
 ID_LIKE="suse"
 ANSI_COLOR="0;32"
 CPE_NAME="cpe:/o:suse:sles:15:sp3"

uname -a:
 Linux localhost 5.3.18-57-default #1 SMP Wed Apr 28 10:54:41 UTC 2021 (ba3c2e9) x86_64
x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit):
 Not affected
CVE-2018-3620 (L1 Terminal Fault):
 Not affected
Microarchitectural Data Sampling:
 Not affected
CVE-2017-5754 (Meltdown):
 Mitigation: Speculative Store Bypass disabled via prct1 and seccomp
CVE-2018-3639 (Speculative Store Bypass):
 Mitigation: usercopy/swapsgs barriers and __user pointer sanitization
CVE-2017-5753 (Spectre variant 1):
 Mitigation: Enhanced IBRS, IBPB: conditional, RSB filling
CVE-2017-5715 (Spectre variant 2):
CVE-2020-0543 (Special Register Buffer Data Sampling):
 Not affected
CVE-2019-11135 (TSX Asynchronous Abort):
 Not affected

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Platform Notes (Continued)

run-level 5 Mar 16 16:21
SPEC is set to: /home/cpu2017
Filesystem Type Size Used Avail Use% Mounted on
/dev/sdc3 xfs 519G 75G 444G 15% /home

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant ML30 Gen10 Plus
Product Family: ProLiant
Serial: SerNum.ACC

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
Memory:
1x Hynix HMAA4GU7AJR8N-XN 32 GB 2 rank 3200, configured at 2933
2x Micron 18ASF4G72AZ-3G2B1 32 GB 2 rank 3200, configured at 2933
1x Samsung M391A4G43AB1-CWE 32 GB 2 rank 3200, configured at 2933

BIOS:
BIOS Vendor: HPE
BIOS Version: U61
BIOS Date: 01/13/2022
BIOS Revision: 1.54
Firmware Revision: 2.55

(End of data from sysinfo program)

Compiler Version Notes

==
C | 519.lbm_r(base, peak) 538.imagick_r(base, peak)
544.nab_r(base, peak)
Intel(R) oneAPI DPC+/C++ Compiler for applications running on Intel(R) 64,
Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
==

C++ | 508.namd_r(base, peak) 510.parest_r(base, peak)
--
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)
CPU2017 License: 3
Test Date: Mar-2022
Test Sponsor: HPE
Hardware Availability: Jan-2022
Tested by: HPE
Software Availability: Jun-2021

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

Compiler Version Notes (Continued)

Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)
==
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
 Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(base) 526.blender_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(peak)
==
Intel(R) C++ Intel(R) 64 Compiler Classic for applications running on
 Intel(R) 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) C Intel(R) 64 Compiler Classic for applications running on Intel(R)
 64, Version 2021.1 Build 20201112_000000
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

==
C++, C | 511.povray_r(base) 526.blender_r(base, peak)
==
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.
Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64,
 Version 2021.1 Build 20201113
Copyright (C) 1985-2020 Intel Corporation. All rights reserved.

(Continued on next page)
Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifort
SPEC CPU®2017 Floating Point Rate Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Mar-2022
Hardware Availability: Jan-2022
Software Availability: Jun-2021

Base Compiler Invocation (Continued)

Benchmarks using both Fortran and C:
ifort icx

Benchmarks using both C and C++:
icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Base Portability Flags

503.bwaves_r: -DSPEC_LP64
507.cactuBSSN_r: -DSPEC_LP64
508.namd_r: -DSPEC_LP64
510.parest_r: -DSPEC_LP64
511.povray_r: -DSPEC_LP64
519.lbm_r: -DSPEC_LP64
521.wrf_r: -DSPEC_LP64 -DSPEC_CASE_FLAG -convert big_endian
526.blender_r: -DSPEC_LP64 -DSPEC_LINUX -funsigned-char
527.cam4_r: -DSPEC_LP64 -DSPEC_CASE_FLAG
538.imagick_r: -DSPEC_LP64
544.nab_r: -DSPEC_LP64
549.fotonik3d_r: -DSPEC_LP64
554.roms_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops -gopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math -flto
-mfpmath=sse -funroll-loops -gopt-mem-layout-trans=4
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo -no-prec-div
-gopt-prefetch -ffinite-math-only

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant ML30 Gen10 Plus
(3.20 GHz, Intel Xeon E-2356G)

SPECrate®2017_fp_base = 50.4
SPECrate®2017_fp_peak = 52.9

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date:</th>
<th>Mar-2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability:</td>
<td>Jan-2022</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability:</td>
<td>Jun-2021</td>
</tr>
</tbody>
</table>

Base Optimization Flags (Continued)

Fortran benchmarks (continued):
- `-qopt-multiple-gather-scatter-by-shuffles` - `qopt-mem-layout-trans=4`
- `-nostandard-realloc-lhs` - `align array32byte -auto`
- `-mbranches-within-32B-boundaries` - `ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both Fortran and C:
- `-w` `-m64` `-std=c11` `-Wl,-z,muldefs` `-xCORE-AVX512` `-Ofast` `-ffast-math`
- `-flto` `-mfpmath=sse` `-funroll-loops` `-qopt-mem-layout-trans=4` `-O3` `-ipo`
- `-no-prec-div` `-qopt-prefetch` `-ffinite-math-only`
- `-qopt-multiple-gather-scatter-by-shuffles`
- `-mbranches-within-32B-boundaries` `-nostandard-realloc-lhs`
- `-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using both C and C++:
- `-w` `-m64` `-std=c11` `-Wl,-z,muldefs` `-xCORE-AVX512` `-Ofast` `-ffast-math`
- `-flto` `-mfpmath=sse` `-funroll-loops` `-qopt-mem-layout-trans=4`
- `-mbranches-within-32B-boundaries` `-ljemalloc`
- `-L/usr/local/jemalloc64-5.0.1/lib`

Benchmarks using Fortran, C, and C++:
- `-w` `-m64` `-std=c11` `-Wl,-z,muldefs` `-xCORE-AVX512` `-Ofast` `-ffast-math`
- `-flto` `-mfpmath=sse` `-funroll-loops` `-qopt-mem-layout-trans=4` `-O3`
- `-no-prec-div` `-qopt-prefetch` `-ffinite-math-only`
- `-qopt-multiple-gather-scatter-by-shuffles`
- `-mbranches-within-32B-boundaries` `-nostandard-realloc-lhs`
- `-align array32byte -auto -ljemalloc -L/usr/local/jemalloc64-5.0.1/lib`

Peak Compiler Invocation

C benchmarks:
- `icx`

C++ benchmarks:
- `icpx`

Fortran benchmarks:
- `ifort`

Benchmarks using both Fortran and C:
- `ifort icx`

Benchmarks using both C and C++:

(Continued on next page)
Peak Compiler Invocation (Continued)

511.povray_r: icpc icc
526.blender_r: icpx icx

Benchmarks using Fortran, C, and C++:
icpx icx ifort

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

519.lbm_r: basepeak = yes
538.imagick_r: basepeak = yes
544.nab_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -flto
-Ofast -qopt-mem-layout-trans=4
-fimf-accuracy-bits=14:sqrt
-mbranches-within-32B-boundaries -ljemalloc
-L/usr/local/jemalloc64-5.0.1/lib

C++ benchmarks:

508.namd_r: basepeak = yes
510.parest_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast -ffast-math
-flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

Fortran benchmarks:

503.bwaves_r: -w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ipo
-no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -nostandard-realloc-lhs
-align array32byte -auto -mbranches-within-32B-boundaries
-ljemalloc -L/usr/local/jemalloc64-5.0.1/lib

(Continued on next page)
Peak Optimization Flags (Continued)

549.fotonik3d_r:basepeak = yes

554.roms_r: Same as 503.bwaves_r

Benchmarks using both Fortran and C:

521.wrf_r: basepeak = yes

527.cam4_r: basepeak = yes

Benchmarks using both C and C++:

511.povray_r: -prof-gen(pass 1) -prof-use(pass 2) -xCORE-AVX512 -O3
-lipo -no-prec-div -qopt-prefetch -ffinite-math-only
-qopt-multiple-gather-scatter-by-shuffles
-qopt-mem-layout-trans=4 -mbranches-within-32B-boundaries
-L/usr/local/jemalloc64-5.0.1/lib -ljemalloc

526.blender_r: basepeak = yes

Benchmarks using Fortran, C, and C++:

507.cactuBSSN_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-Intel-V1.0-ICX-revE.xml
http://www.spec.org/cpu2017/flags/Intel-ic2021-official-linux64_revA.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-03-16 06:55:51-0400.
Originally published on 2022-04-12.