SPEC CPU®2017 Integer Rate Result

Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

<table>
<thead>
<tr>
<th>SPECrate®2017_int_base = 303</th>
<th>SPECrate®2017_int_peak = 311</th>
</tr>
</thead>
</table>

CPU2017 License: 3358

- **Test Sponsor:** Inspur Corporation
- **Tested by:** Inspur Corporation
- **Test Date:** Oct-2022
- **Hardware Availability:** Apr-2021
- **Software Availability:** May-2022

Hardware

<table>
<thead>
<tr>
<th>Program</th>
<th>Copies</th>
<th>SPECrate®2017_int_base (303)</th>
<th>SPECrate®2017_int_peak (311)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>64</td>
<td>230</td>
<td>238</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>64</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>64</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>525.x264_r</td>
<td>64</td>
<td>501</td>
<td></td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>64</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>541.leela_r</td>
<td>64</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>64</td>
<td>640</td>
<td></td>
</tr>
<tr>
<td>557.xz_r</td>
<td>64</td>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>

Software

- **OS:** Red Hat Enterprise Linux release 8.3 (Ootpa)
- **Compiler:**
 - C/C++: Version 2022.1 of Intel oneAPI DPC++/C++ Compiler Build 20220316 for Linux;
 - Fortran: Version 2022.1 of Intel Fortran Compiler Build 20220316 for Linux;
- **Parallel:** No
- **Firmware:** Version 04.12.02 released Apr-2021
- **File System:** xfs
- **System State:** Run level 3 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 32/64-bit
- **Other:** jemalloc memory allocator V5.0.1
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage.

CPU Name: Intel Xeon Gold 6346

- **Max MHz:** 3600
- **Nominal:** 3100
- **Enabled:** 32 cores, 2 chips, 2 threads/core
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 48 KB D on chip per core
- **L2:** 1.25 MB I+D on chip per core
- **L3:** 36 MB I+D on chip per chip
- **Other:** None

Memory

- 1 TB (32 x 32 GB 2Rx8 PC4-3200AA-R)

Storage

- 1 x 2 TB NVME SSD

Other

- None
Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Copies</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.perlbench_r</td>
<td>64</td>
<td>483</td>
<td>211</td>
<td>480</td>
<td>212</td>
<td>482</td>
<td>212</td>
<td>64</td>
<td>441</td>
<td>231</td>
<td>443</td>
<td>230</td>
</tr>
<tr>
<td>502.gcc_r</td>
<td>64</td>
<td>381</td>
<td>238</td>
<td>383</td>
<td>236</td>
<td>378</td>
<td>240</td>
<td>64</td>
<td>329</td>
<td>276</td>
<td>329</td>
<td>275</td>
</tr>
<tr>
<td>505.mcf_r</td>
<td>64</td>
<td>206</td>
<td>501</td>
<td>207</td>
<td>500</td>
<td>207</td>
<td>501</td>
<td>64</td>
<td>206</td>
<td>501</td>
<td>207</td>
<td>500</td>
</tr>
<tr>
<td>520.omnetpp_r</td>
<td>64</td>
<td>471</td>
<td>178</td>
<td>471</td>
<td>178</td>
<td>476</td>
<td>176</td>
<td>64</td>
<td>471</td>
<td>178</td>
<td>471</td>
<td>178</td>
</tr>
<tr>
<td>523.xalancbmk_r</td>
<td>64</td>
<td>131</td>
<td>518</td>
<td>131</td>
<td>515</td>
<td>131</td>
<td>517</td>
<td>64</td>
<td>131</td>
<td>518</td>
<td>131</td>
<td>515</td>
</tr>
<tr>
<td>525.x264_r</td>
<td>64</td>
<td>186</td>
<td>604</td>
<td>185</td>
<td>604</td>
<td>185</td>
<td>605</td>
<td>64</td>
<td>177</td>
<td>633</td>
<td>177</td>
<td>634</td>
</tr>
<tr>
<td>531.deepsjeng_r</td>
<td>64</td>
<td>334</td>
<td>220</td>
<td>334</td>
<td>220</td>
<td>334</td>
<td>219</td>
<td>64</td>
<td>334</td>
<td>220</td>
<td>334</td>
<td>220</td>
</tr>
<tr>
<td>541.leela_r</td>
<td>64</td>
<td>498</td>
<td>213</td>
<td>499</td>
<td>212</td>
<td>499</td>
<td>212</td>
<td>64</td>
<td>498</td>
<td>213</td>
<td>499</td>
<td>212</td>
</tr>
<tr>
<td>548.exchange2_r</td>
<td>64</td>
<td>263</td>
<td>639</td>
<td>262</td>
<td>640</td>
<td>262</td>
<td>640</td>
<td>64</td>
<td>263</td>
<td>639</td>
<td>262</td>
<td>640</td>
</tr>
<tr>
<td>557.xz_r</td>
<td>64</td>
<td>445</td>
<td>155</td>
<td>446</td>
<td>155</td>
<td>446</td>
<td>155</td>
<td>64</td>
<td>445</td>
<td>155</td>
<td>445</td>
<td>155</td>
</tr>
</tbody>
</table>

SPECrate®2017_int_base = 303
SPECrate®2017_int_peak = 311

Results appear in the order in which they were run. Bold underlined text indicates a median measurement.

Compiler Notes

SPEC has ruled that the compiler used for this result was performing a compilation that specifically improves the performance of the 523.xalancbmk_r / 623.xalanchmk_s benchmarks using a priori knowledge of the SPEC code and dataset to perform a transformation that has narrow applicability.

In order to encourage optimizations that have wide applicability (see rule 1.4 https://www.spec.org/cpu2017/Docs/runrules.html#rule_1.4), SPEC will no longer publish results using this optimization.

This result is left in the SPEC results database for historical reference.

Submit Notes

The `numactl` mechanism was used to bind copies to processors. The config file option 'submit' was used to generate `numactl` commands to bind each copy to a specific processor.

For details, please see the config file.

Operating System Notes

- Stack size set to unlimited using "ulimit -s unlimited"
- `Scaling_Governor` set to Performance

Environment Variables Notes

Environment variables set by `runcpu` before the start of the run:

```
LD_LIBRARY_PATH = "/home/CPU2017/lib/intel64:/home/CPU2017/lib/ia32:/home/CPU2017/je5.0.1-32"
MALLOC_CONF = "retain:true"
```
SPEC CPU®2017 Integer Rate Result

Inspur Corporation
Inspur NF5466M6 (Intel Xeon Gold 6346)

SPECrate®2017_int_base = 303
SPECrate®2017_int_peak = 311

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: Oct-2022
Hardware Availability: Apr-2021
Software Availability: May-2022

General Notes

Binaries compiled on a system with 2x Intel Xeon Platinum 8280M CPU + 384GB RAM
memory using Red Hat Enterprise Linux 8.4
Transparent Huge Pages enabled by default
Prior to runcpu invocation
Filesystem page cache synced and cleared with:
sync; echo 3>/proc/sys/vm/drop_caches

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1)
is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2)
is mitigated in the system as tested and documented.

jemalloc, a general purpose malloc implementation
built with the RedHat Enterprise 7.5,
and the system compiler gcc 4.8.5;
sources available from jemalloc.net or

Platform Notes

BIOS configuration:
ENERGY_PERF_BIAS_CFG mode set to Performance
Hardware Prefetch set to Disable
VT Support set to Disable
Sub NUMA Cluster (SNC) set to Enable

Sysinfo program /home/CPU2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec915b55891ef0e16a6a864d
running on localhost.localdomain Sat Oct 8 05:49:21 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHZ
 2 "physical id"s (chips)
 64 "processors"
core, siblings (Caution: counting these is hw and system dependent. The following
excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 16
siblings : 32
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

From lscpu from util-linux 2.32.1:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Thread(s) per core: 2
Core(s) per socket: 16
Socket(s): 2
NUMA node(s): 4
Vendor ID: GenuineIntel
CPU family: 6

(Continued on next page)
SPEC CPU®2017 Integer Rate Result

Inspur Corporation

Insper NF5466M6 (Intel Xeon Gold 6346)

| SPECrate®2017_int_base | 303 |
| SPECrate®2017_int_peak | 311 |

CPU2017 License: 3358

Test Sponsor: Insper Corporation

Tested by: Insper Corporation

Test Date: Oct-2022

Hardware Availability: Apr-2021

Software Availability: May-2022

Platform Notes (Continued)

Model:

106

Model name:

Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz

Stepping:

6

CPU MHz:

3600.000

CPU max MHz:

3600.0000

CPU min MHz:

800.0000

BogoMIPS:

6200.00

Virtualization:

VT-x

L1d cache:

48K

L1i cache:

32K

L2 cache:

1280K

L3 cache:

36864K

NUMA node0 CPU(s):

0-7,32-39

NUMA node1 CPU(s):

8-15,40-47

NUMA node2 CPU(s):

16-24,48-56

NUMA node3 CPU(s):

25-31,57-63

Flags:

fpu vme de pse mrems cmov pmxs pat pse36 clflush dets acpi mmx fxsr sse sse2 ss ht tm pse syscall nx pdpte1gb rdtsscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 da_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse3 vmm xsave svm rdtscp vsnvi fma512 breathed sse4_1 marters syscall

/proc/cpuinfo cache data

Cache size: 36864 KB

From numactl --hardware

WARNING: a numactl 'node' might or might not correspond to a physical chip.

- available: 4 nodes (0-3)
- node 0 cpus: 0 1 2 3 4 5 6 7 32 33 34 35 36 37 38 39
- node 0 size: 253539 MB
- node 0 free: 257368 MB
- node 1 cpus: 8 9 10 11 12 13 14 15 40 41 42 43 44 45 46 47
- node 1 size: 253626 MB
- node 1 free: 257711 MB
- node 2 cpus: 16 17 18 19 20 21 22 23 24 48 49 50 51 52 53 54 55 56
- node 2 size: 253149 MB
- node 2 free: 257715 MB
- node 3 cpus: 25 26 27 28 29 30 31 32 37 58 59 60 61 62 63
- node 3 size: 254391 MB
- node 3 free: 257779 MB

From /proc/meminfo

- MemTotal: 1056492600 kB
- HugePages_Total: 0
- Hugepagesize: 2048 kB

(Continued on next page)
Platform Notes (Continued)

/sbin/tuned-adm active
 Current active profile: throughput-performance

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

From /etc/*release* /etc/*version*
osti-release:
 NAME="Red Hat Enterprise Linux"
 VERSION="8.3 (Ootpa)"
 ID="rhel"
 ID_LIKE="fedora"
 VERSION_ID="8.3"
 PLATFORM_ID="platform:el8"
 PRETTY_NAME="Red Hat Enterprise Linux 8.3 (Ootpa)"
 ANSI_COLOR="0;31"
redhat-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release: Red Hat Enterprise Linux release 8.3 (Ootpa)
system-release-cpe: cpe:/o:redhat:enterprise_linux:8.3:ga
uname -a:
Linux localhost.localdomain 4.18.0-240.el8.x86_64 #1 SMP Wed Sep 23 05:13:10 EDT 2020
x86_64 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
CVE-2018-3639 (Speculative Store Bypass): Mitigation: Speculative Store
 Bypass disabled via prctl and seccomp
CVE-2017-5753 (Spectre variant 1): Mitigation: usercopy/swapgs
 barriers and __user pointer sanitation
CVE-2017-5715 (Spectre variant 2): Mitigation: Enhanced IBRS, IBPB:
 conditional, RSB filling
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected

run-level 3 Oct 8 05:41

SPEC is set to: /home/CPU2017

Additional information from dmidecode 3.2 follows. WARNING: Use caution when you
interpret this section. The 'dmidecode' program reads system data which is "intended to
allow hardware to be accurately determined", but the intent may not be met, as there are
frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
Memory:
 32x Micron 18ASF4G72PDZ-3G2E1 32 GB 2 rank 3200

(Continued on next page)
Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

SPEC CPU®2017 Integer Rate Result

Copyright 2017-2024 Standard Performance Evaluation Corporation

Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

SPECrate®2017_int_base = 303

SPECrate®2017_int_peak = 311

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

Test Date: Oct-2022
Hardware Availability: Apr-2021
Software Availability: May-2022

Platform Notes (Continued)

BIOS:
BIOS Vendor: American Megatrends Inc.
BIOS Version: 04.12.02
BIOS Date: 04/02/2021
BIOS Revision: 5.21

(End of data from sysinfo program)

Compiler Version Notes

C | 502.gcc_r(peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on IA-32, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

C | 502.gcc_r(peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on IA-32, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

C | 500.perlbench_r(base, peak) 502.gcc_r(base) 505.mcf_r(base, peak) 525.x264_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

C++ | 520.omnetpp_r(base, peak) 523.xalancbmk_r(base, peak) 531.deepsjeng_r(base, peak)

Intel(R) oneAPI DPC++/C++ Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.

Fortran | 548.exchange2_r(base, peak)

Intel(R) Fortran Compiler for applications running on Intel(R) 64, Version 2022.1.0 Build 20220316
Copyright (C) 1985-2022 Intel Corporation. All rights reserved.
Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

SPECrater®2017_int_base = 303
SPECrater®2017_int_peak = 311

Base Compiler Invocation

C benchmarks:
icx

C++ benchmarks:
icpx

Fortran benchmarks:
ifx

Base Portability Flags

500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64
502.gcc_r: -DSPEC_LP64
505.mcf_r: -DSPEC_LP64
520.omnetpp_r: -DSPEC_LP64
523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX
525.x264_r: -DSPEC_LP64
531.deepsjeng_r: -DSPEC_LP64
541.leela_r: -DSPEC_LP64
548.exchange2_r: -DSPEC_LP64
557.xz_r: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ffast-math
-flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/intel64_lin
-lqkmalloc

C++ benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/intel64_lin
-lqkmalloc

Fortran benchmarks:
-w -m64 -Wl,-z,muldefs -xCORE-AVX512 -O3 -ffast-math -flto
-mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4
-nostandard-realloc-lhs -align array32byte -auto
-L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/intel64_lin
-lqkmalloc
SPEC CPU®2017 Integer Rate Result

Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

SPECrate®2017_int_base = 303

SPECrate®2017_int_peak = 311

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation
Test Date: Oct-2022
Hardware Availability: Apr-2021
Software Availability: May-2022

Peak Compiler Invocation

- **C benchmarks:** icx
- **C++ benchmarks:** icpx
- **Fortran benchmarks:** ifx

Peak Portability Flags

- `500.perlbench_r: -DSPEC_LP64 -DSPEC_LINUX_X64`
- `502.gcc_r: -D_FILE_OFFSET_BITS=64`
- `505.mcf_r: -DSPEC_LP64`
- `520.omnetpp_r: -DSPEC_LP64`
- `523.xalancbmk_r: -DSPEC_LP64 -DSPEC_LINUX`
- `525.x264_r: -DSPEC_LP64`
- `531.deepsjeng_r: -DSPEC_LP64`
- `541.leela_r: -DSPEC_LP64`
- `548.exchange2_r: -DSPEC_LP64`
- `557.xz_r: -DSPEC_LP64`

Peak Optimization Flags

- **C benchmarks:**
 - `500.perlbench_r: -w -std=c11 -m64 -Wl,-z,muldefs -fprofile-generate(pass 1)`
 - `500.perlbench_r: -w -std=c11 -m64 -Wl,-z,muldefs -fprofile-use=default.profdata(pass 2) -xCORE-AVX512 -Ofast -ffast-math -flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -fno-strict-overflow -L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/intel64_lin -lqkmalloc`
 - `502.gcc_r: -m32`
 - `-L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/ia32_lin`
 - `-std=gnu89 -Wl,-z,muldefs -fprofile-generate(pass 1)`
 - `-fprofile-use=default.profdata(pass 2) -xCORE-AVX512 -Ofast -ffast-math -flto -mfpmath=sse -funroll-loops -qopt-mem-layout-trans=4 -L/usr/local/jemalloc32-5.0.1/lib -ljemalloc`

(Continued on next page)
Inspur Corporation

Inspur NF5466M6 (Intel Xeon Gold 6346)

<table>
<thead>
<tr>
<th>SPECrate®2017_int_base</th>
<th>SPECrate®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>311</td>
</tr>
</tbody>
</table>

CPU2017 License: 3358
Test Sponsor: Inspur Corporation
Tested by: Inspur Corporation

<table>
<thead>
<tr>
<th>Test Date:</th>
<th>Hardware Availability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct-2022</td>
<td>Apr-2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Availability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-2022</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

505.mcf_r: basepeak = yes

525.x264_r: -w -std=c11 -m64 -Wl,-z,muldefs -xCORE-AVX512 -Ofast
-ffast-math -flto -mfpmath=sse -funroll-loops
-qopt-mem-layout-trans=4 -fno-alias
-L/usr/local/intel/compiler/2022.1.0/linux/compiler/lib/intel64_lin
-lqkmalloc

557.xz_r: basepeak = yes

C++ benchmarks:
520.omnetpp_r: basepeak = yes
523.xalancbmk_r: basepeak = yes
531.deepsjeng_r: basepeak = yes
541.leela_r: basepeak = yes

Fortran benchmarks:
548.exchange2_r: basepeak = yes

The flags files that were used to format this result can be browsed at
http://www.spec.org/cpu2017/flags/Inspur-Platform-Settings-V2.5.html

You can also download the XML flags sources by saving the following links:
http://www.spec.org/cpu2017/flags/Inspur-Platform-Settings-V2.5.xml

SPEC CPU and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-10-08 05:49:20-0400.
Report generated on 2024-01-29 17:08:54 by CPU2017 PDF formatter v6716.
Originally published on 2022-11-08.