SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

<table>
<thead>
<tr>
<th>Thread</th>
<th>SPECspeed®2017_int_base</th>
<th>SPECspeed®2017_int_peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>8.63</td>
<td>14.7</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>14.7</td>
<td>20.6</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>10.5</td>
<td>21.4</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>19.4</td>
<td>21.9</td>
</tr>
<tr>
<td>623.xalancbmk_s</td>
<td>7.16</td>
<td></td>
</tr>
<tr>
<td>625.x264_s</td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>641.leela_s</td>
<td>27.2</td>
<td></td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>657.xz_s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware
- **CPU Name:** AMD EPYC 9354
- **Max MHz:** 3800
- **Nominal:** 3250
- **Enabled:** 64 cores, 2 chips
- **Orderable:** 1.2 chips
- **Cache L1:** 32 KB I + 32 KB D on chip per core
- **Cache L2:** 1 MB I+D on chip per core
- **Cache L3:** 256 MB I+D on chip per chip, 32 MB shared / 4 cores
- **Other:** None
- **Memory:** 1536 GB (24 x 64 GB 2Rx4 PC5-4800B-R)
- **Storage:** 1 x 480 GB SATA SSD
- **Other:** None

Software
- **OS:** Ubuntu 22.04.1 LTS
- **Kernel:** 5.15.0-50-generic
- **Compiler:** C/C++/Fortran: Version 4.0.0 of AOCC
- **Parallel:** Yes
- **Firmware:** HPE BIOS Version v1.12 11/24/2022 released Nov-2022
- **File System:** ext4
- **System State:** Run level 5 (multi-user)
- **Base Pointers:** 64-bit
- **Peak Pointers:** 64-bit
- **Other:** None
- **Power Management:** BIOS and OS set to prefer performance at the cost of additional power usage
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

Copyright 2017-2023 Standard Performance Evaluation Corporation

SPEC CPU®2017 Integer Speed Result

SPECspeed®2017_int_base = 14.3

SPECspeed®2017_int_peak = 14.5

Results Table

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Threads</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
<th>Seconds</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>600.perlbench_s</td>
<td>64</td>
<td>206</td>
<td>8.61</td>
<td>206</td>
<td>8.63</td>
<td>206</td>
<td>8.63</td>
<td>64</td>
<td>206</td>
<td>8.61</td>
<td>206</td>
<td>8.63</td>
<td>206</td>
<td>8.63</td>
</tr>
<tr>
<td>602.gcc_s</td>
<td>64</td>
<td>271</td>
<td>14.7</td>
<td>271</td>
<td>14.7</td>
<td>272</td>
<td>14.6</td>
<td>64</td>
<td>271</td>
<td>14.7</td>
<td>272</td>
<td>14.6</td>
<td>272</td>
<td>14.6</td>
</tr>
<tr>
<td>605.mcf_s</td>
<td>64</td>
<td>229</td>
<td>20.6</td>
<td>229</td>
<td>20.6</td>
<td>229</td>
<td>20.7</td>
<td>1</td>
<td>220</td>
<td>21.4</td>
<td>220</td>
<td>21.4</td>
<td>220</td>
<td>21.4</td>
</tr>
<tr>
<td>620.omnetpp_s</td>
<td>64</td>
<td>155</td>
<td>10.5</td>
<td>153</td>
<td>10.6</td>
<td>157</td>
<td>10.4</td>
<td>64</td>
<td>155</td>
<td>10.5</td>
<td>153</td>
<td>10.6</td>
<td>157</td>
<td>10.4</td>
</tr>
<tr>
<td>623.xalanchmk_s</td>
<td>64</td>
<td>72.8</td>
<td>19.5</td>
<td>72.9</td>
<td>19.4</td>
<td>73.1</td>
<td>19.4</td>
<td>1</td>
<td>67.3</td>
<td>21.0</td>
<td>67.5</td>
<td>21.0</td>
<td>67.6</td>
<td>21.0</td>
</tr>
<tr>
<td>625.x264_s</td>
<td>64</td>
<td>80.5</td>
<td>21.9</td>
<td>80.5</td>
<td>21.9</td>
<td>80.7</td>
<td>21.9</td>
<td>64</td>
<td>80.5</td>
<td>21.9</td>
<td>80.5</td>
<td>21.9</td>
<td>80.7</td>
<td>21.9</td>
</tr>
<tr>
<td>631.deepsjeng_s</td>
<td>64</td>
<td>200</td>
<td>7.16</td>
<td>199</td>
<td>7.19</td>
<td>201</td>
<td>7.14</td>
<td>64</td>
<td>200</td>
<td>7.16</td>
<td>199</td>
<td>7.19</td>
<td>201</td>
<td>7.14</td>
</tr>
<tr>
<td>641.leela_s</td>
<td>64</td>
<td>285</td>
<td>5.99</td>
<td>285</td>
<td>6.00</td>
<td>284</td>
<td>6.00</td>
<td>64</td>
<td>285</td>
<td>5.99</td>
<td>285</td>
<td>6.00</td>
<td>284</td>
<td>6.00</td>
</tr>
<tr>
<td>648.exchange2_s</td>
<td>64</td>
<td>110</td>
<td>26.7</td>
<td>110</td>
<td>26.7</td>
<td>110</td>
<td>26.7</td>
<td>64</td>
<td>110</td>
<td>26.7</td>
<td>110</td>
<td>26.7</td>
<td>110</td>
<td>26.7</td>
</tr>
<tr>
<td>657.xz_s</td>
<td>64</td>
<td>228</td>
<td>27.2</td>
<td>228</td>
<td>27.2</td>
<td>230</td>
<td>26.9</td>
<td>64</td>
<td>228</td>
<td>27.2</td>
<td>230</td>
<td>26.9</td>
<td>228</td>
<td>27.2</td>
</tr>
</tbody>
</table>

Compiler Notes

The AMD64 AOCC Compiler Suite is available at
http://developer.amd.com/amd-aocc/

Submit Notes

The config file option 'submit' was used.
'numactl' was used to bind copies to the cores.
See the configuration file for details.

Operating System Notes

'ulimit -s unlimited' was used to set environment stack size limit
'ulimit -l 2097152' was used to set environment locked pages in memory limit

runcpu command invoked through numactl i.e.:
numactl --interleave=all runcpu <etc>

To limit dirty cache to 8% of memory, 'sysctl -w vm.dirty_ratio=8' run as root.
To limit swap usage to minimum necessary, 'sysctl -w vm.swappiness=1' run as root.
To free node-local memory and avoid remote memory usage,
'sysctl -w vm.zone_reclaim_mode=1' run as root.
To clear filesystem caches, 'sync; sysctl -w vm.drop_caches=3' run as root.
To disable address space layout randomization (ASLR) to reduce run-to-run variability,
'sysctl -w kernel.randomize_va_space=0' run as root.

(Continued on next page)
Operating System Notes (Continued)

To enable Transparent Hugepages (THP) for all allocations, 'echo always > /sys/kernel/mm/transparent_hugepage/enabled' and 'echo always > /sys/kernel/mm/transparent_hugepage/defrag' run as root.

Environment Variables Notes

Environment variables set by runcpu before the start of the run:
GOMP_CPU_AFFINITY = "0-63"
LD_LIBRARY_PATH = "/home/new_cpu2017/amd_speed_aocc400_genoa_B_lib/lib:"
LIBOMP_NUM_HIDDEN_HELPER_THREADS = "0"
MALLOC_CONF = "oversize_threshold:0,retain:true"
OMP_DYNAMIC = "false"
OMP_SCHEDULE = "static"
OMP_STACKSIZE = "128M"
OMP_THREAD_LIMIT = "64"

Environment variables set by runcpu during the 605.mcf_s peak run:
GOMP_CPU_AFFINITY = "15"

Environment variables set by runcpu during the 623.xalancbmk_s peak run:
GOMP_CPU_AFFINITY = "15"

General Notes

Binaries were compiled on a system with 2x AMD EPYC 9174F CPU + 1.5TiB Memory using RHEL 8.6

NA: The test sponsor attests, as of date of publication, that CVE-2017-5754 (Meltdown) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5753 (Spectre variant 1) is mitigated in the system as tested and documented.
Yes: The test sponsor attests, as of date of publication, that CVE-2017-5715 (Spectre variant 2) is mitigated in the system as tested and documented.

Platform Notes

BIOS Configuration
Workload Profile set to General Peak Frequency Compute
Determinism Control set to Manual
Performance Determinism set to Power Deterministic
AMD SMT Option set to Disabled
NUMA memory domains per socket set to Four memory domains per socket
Last-Level Cache (LLC) as NUMA Node set to Enabled

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

<table>
<thead>
<tr>
<th>SPECspeed®2017_int_peak</th>
<th>SPECspeed®2017_int_base</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>14.3</td>
</tr>
</tbody>
</table>

Platform Notes (Continued)

ACPI CST C2 Latency set to 18 microseconds
Memory PStates set to Disabled
Thermal Configuration set to Maximum Cooling

The system ROM used for this result contains microcode version 0xa10110e for the AMD EPYC 9nn4X family of processors. The reference code/AGESA version used in this ROM is version GenoaPI 1.0.0.1-L6

Sysinfo program /home/new_cpu2017/bin/sysinfo
Rev: r6622 of 2021-04-07 982a61ec0915b55891ef0e16aca6c46d
running on admin1 Tue Jun 28 00:30:04 2022

SUT (System Under Test) info as seen by some common utilities.
For more information on this section, see
https://www.spec.org/cpu2017/Docs/config.html#sysinfo

From /proc/cpuinfo
model name : AMD EPYC 9354 32-Core Processor
2 "physical id"s (chips)
64 "processors"
cores, siblings (Caution: counting these is hw and system dependent. The following excerpts from /proc/cpuinfo might not be reliable. Use with caution.)
cpu cores : 32
siblings : 32
physical 0: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
physical 1: cores 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

From lscpu from util-linux 2.37.2:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 64
On-line CPU(s) list: 0-63
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9354 32-Core Processor
CPU family: 25
Model: 17
Thread(s) per core: 1
Core(s) per socket: 32
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 3800.0000
CPU min MHz: 400.0000

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE
Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

BogoMIPS: 6490.25
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr
pg e mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt
pdpdirb rdtscp lm constant_tsc rep_good nopl nonstop-tsc cpuid extd_apicid
aperfmperf rpl pni pclmulqdq monitor sse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe
popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a
misalignsse 3nowprefetch osuw wdt tce topoext perfctr_core perfctr_nb
bext perfctr_l1d mwauto cpb cat_l3 cdp_l3 invpd_single hw_pstate ssbd mba ibrs
ibpb stibp vmcall fsqsbse bmi1 avx2 smep bmi2 1rmvms cid qmm rdt_a avx512f
avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha ni avx512bw
avx512vl xsaveopt xsavec xgetbv1 xsaves cmq_llc cmq_mapper qmm_total
qmm_mm unav_mm local avx512_bf16 clzero irperf xsaveopt rdpru wbinvd amds_pip ccpp arat
npt lvbr svm_lock nrip_save tsc_scale vmcb_clean flushbyasis decodeassists
pausefilter pffrthres occu v_vmsave_vmload vgii v_vspec_ctl avx512vbmi umip pku
ospke avx512_vbmi gfn vesa vpcmuloqiq avx512_vnni avx512_bitalg avx512_vpopcntdq
la57 rdpid overflow_recover succor smca fsar flush_lid

Virtualization: AMD-V

L1d cache: 2 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 64 MiB (64 instances)
L3 cache: 512 MiB (16 instances)

NUMA node(s): 16
NUMA node0 CPU(s): 0-3
NUMA node1 CPU(s): 16-19
NUMA node2 CPU(s): 8-11
NUMA node3 CPU(s): 24-27
NUMA node4 CPU(s): 12-15
NUMA node5 CPU(s): 28-31
NUMA node6 CPU(s): 4-7
NUMA node7 CPU(s): 20-23
NUMA node8 CPU(s): 32-35
NUMA node9 CPU(s): 48-51
NUMA node10 CPU(s): 40-43
NUMA node11 CPU(s): 56-59
NUMA node12 CPU(s): 44-47
NUMA node13 CPU(s): 60-63
NUMA node14 CPU(s): 36-39
NUMA node15 CPU(s): 52-55

Vulnerability Itlb multi-hit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via
prct1 and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

Copyright 2017-2023 Standard Performance Evaluation Corporation

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

CPU2017 License: 3
Test Date: Jan-2023
Test Sponsor: HPE
Hardware Availability: Dec-2022
Tested by: HPE
Software Availability: Nov-2022

Platform Notes (Continued)

pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW,
STIBP disabled, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

From lscpu --cache:
NAME ONE-SIZE ALL-SIZE WAYS TYPE LEVEL SETS PHY-LINE COHERENCY-SIZE
L1d 32K 2M 8 Data 1 64 1 64
L1i 32K 2M 8 Instruction 1 64 1 64
L2 1M 64M 8 Unified 2 2048 1 64
L3 32M 512M 16 Unified 3 32768 1 64

/proc/cpuinfo cache data
 cache size : 1024 KB

From numactl --hardware
WARNING: a numactl 'node' might or might not correspond to a physical chip.
 available: 16 nodes (0-15)
 node 0 cpus: 0 1 2 3
 node 0 size: 96456 MB
 node 0 free: 96333 MB
 node 1 cpus: 16 17 18 19
 node 1 size: 96731 MB
 node 1 free: 96641 MB
 node 2 cpus: 8 9 10 11
 node 2 size: 96766 MB
 node 2 free: 96616 MB
 node 3 cpus: 24 25 26 27
 node 3 size: 96766 MB
 node 3 free: 96682 MB
 node 4 cpus: 12 13 14 15
 node 4 size: 96766 MB
 node 4 free: 96672 MB
 node 5 cpus: 28 29 30 31
 node 5 size: 96766 MB
 node 5 free: 96660 MB
 node 6 cpus: 4 5 6 7
 node 6 size: 96766 MB
 node 6 free: 96628 MB
 node 7 cpus: 20 21 22 23
 node 7 size: 96766 MB
 node 7 free: 96685 MB
 node 8 cpus: 32 33 34 35
 node 8 size: 96766 MB
 node 8 free: 96647 MB
 node 9 cpus: 48 49 50 51

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

<table>
<thead>
<tr>
<th>CPU2017 License</th>
<th>Test Date</th>
<th>Hardware Availability</th>
<th>Software Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Jan-2023</td>
<td>Dec-2022</td>
<td>Nov-2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tested by</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE</td>
<td></td>
</tr>
</tbody>
</table>

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

Platform Notes (Continued)

- node 9 size: 96766 MB
- node 9 free: 96625 MB
- node 10 cpus: 40 41 42 43
- node 10 size: 96766 MB
- node 10 free: 96642 MB
- node 11 cpus: 56 57 58 59
- node 11 size: 96766 MB
- node 11 free: 96679 MB
- node 12 cpus: 44 45 46 47
- node 12 size: 96766 MB
- node 12 free: 96496 MB
- node 13 cpus: 60 61 62 63
- node 13 size: 96766 MB
- node 13 free: 96680 MB
- node 14 cpus: 36 37 38 39
- node 14 size: 96766 MB
- node 14 free: 96603 MB
- node 15 cpus: 52 53 54 55
- node 15 size: 96719 MB
- node 15 free: 96604 MB

node distances:

<table>
<thead>
<tr>
<th>node</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

From /proc/meminfo

- MemTotal: 1585025520 kB
- HugePages_Total: 0
- Hugepagesize: 2048 kB

/sbin/tuned-adm active

Current active profile: balanced

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Test Date: Jan-2023
Hardware Availability: Dec-2022
Software Availability: Nov-2022

Platform Notes (Continued)

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor has performance

/usr/bin/lsb_release -d
Ubuntu 22.04.1 LTS

From /etc/*release* /etc/*version*
debian_version: bookworm/sid
os-release:
 PRETTY_NAME="Ubuntu 22.04.1 LTS"
 NAME="Ubuntu"
 VERSION_ID="22.04"
 VERSION="22.04.1 LTS (Jammy Jellyfish)"
 VERSION_CODENAME=jammy
 ID=ubuntu
 ID_LIKE=debian
 HOME_URL="https://www.ubuntu.com/"

uname -a:
 Linux admin1 5.15.0-50-generic #56-Ubuntu SMP Tue Sep 20 13:23:26 UTC 2022 x86_64
 x86_64 x86_64 GNU/Linux

Kernel self-reported vulnerability status:

CVE-2018-12207 (iTLB Multihit): Not affected
CVE-2018-3620 (L1 Terminal Fault): Not affected
Microarchitectural Data Sampling: Not affected
CVE-2017-5754 (Meltdown): Not affected
mmio_stale_data: Not affected
retbleed: Mitigation: Speculative Store Bypass disabled via prctl and seccomp
CVE-2018-3639 (Speculative Store Bypass):
CVE-2017-5753 (Spectre variant 1):
 Mitigation: usercopy/swaps barriers and __user pointer sanitation
CVE-2017-5715 (Spectre variant 2):
 Mitigation: Retpolines, IBPB: conditional, IBRS_FW, STIBP: disabled, RSB filling,
 PBRSB-eIBRS: Not affected
CVE-2020-0543 (Special Register Buffer Data Sampling): Not affected
CVE-2019-11135 (TSX Asynchronous Abort): Not affected
run-level 5 Jun 28 00:00

SPEC is set to: /home/new_cpu2017
Filesystem Type Size Used Avail Use% Mounted on

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

Platform Notes (Continued)

/devmapper/ubuntu--vg-ubuntu--lv ext4 437G 62G 357G 15% /

From /sys/devices/virtual/dmi/id
Vendor: HPE
Product: ProLiant DL365 Gen11
Product Family: ProLiant
Serial: DL365G11-001

Additional information from dmidecode 3.3 follows. WARNING: Use caution when you interpret this section. The 'dmidecode' program reads system data which is "intended to allow hardware to be accurately determined", but the intent may not be met, as there are frequent changes to hardware, firmware, and the "DMTF SMBIOS" standard.
Memory:
 24x Hynix HMCG94AEBRA103N 64 GB 2 rank 4800

BIOS:
 BIOS Vendor: HPE
 BIOS Version: 1.12
 BIOS Date: 11/24/2022
 BIOS Revision: 1.12
 Firmware Revision: 1.10

(End of data from sysinfo program)

Compiler Version Notes

C
600.perlbench_s(base, peak) 602.gcc_s(base, peak) 605.mcf_s(base, peak) 625.x264_s(base, peak) 657.xz_s(base, peak)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

C++
620.omnetpp_s(base, peak) 623.xalancbmk_s(base, peak) 631.deepsjeng_s(base, peak) 641.leela_s(base, peak)

AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

CPU2017 License: 3
Test Sponsor: HPE
Tested by: HPE

Compiler Version Notes (Continued)

Fortran | 648.exchange2_s (base, peak)
-- --
AMD clang version 14.0.6 (CLANG: AOCC_4.0.0-Build#389 2022_10_07) (based on LLVM Mirror.Version.14.0.6)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /opt/AMD/aocc/aocc-compiler-rel-4.0-3206-389/bin

Base Compiler Invocation

C benchmarks:
clang
C++ benchmarks:
clang++
Fortran benchmarks:
flang

Base Portability Flags

600.perlbench_s: -DSPEC_LINUX_X64 -DSPEC_LP64
602.gcc_s: -DSPEC_LP64
605.mcf_s: -DSPEC_LP64
620.omnetpp_s: -DSPEC_LP64
623.xalancbmk_s: -DSPEC_LINUX -DSPEC_LP64
625.x264_s: -DSPEC_LP64
631.deepsjeng_s: -DSPEC_LP64
641.leela_s: -DSPEC_LP64
648.exchange2_s: -DSPEC_LP64
657.xz_s: -DSPEC_LP64

Base Optimization Flags

C benchmarks:
-m64 -Wl,-mllvm -Wl,-align-all-nofallthru-blocks=6
-Wl,-mllvm -Wl,-reduce-array-computations=3

(Continued on next page)
SPEC CPU®2017 Integer Speed Result

Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

C benchmarks (continued):
-W1,-allow-multiple-definition -O3 -march=znver4 -fveclib=AMDLIBM
-ffast-math -fopenmp -flto -fstruct-layout=7
-mllvm -unroll-threshold=50 -mllvm -inline-threshold=1000
-fremap-arrays -fstrip-mining -mllvm -reduce-array-computations=3
-DSPEC_OPENMP -zopt -fopenmp=libomp -lomp -lamdlibm -lflang
-lamdalloc

C++ benchmarks:
-m64 -W1,-mllvm -W1,-align-all-nofallthru-blocks=6
-W1,-mllvm -W1,-reduce-array-computations=3 -O3 -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto
-mllvm -unroll-threshold=100 -finline-aggressive
-mllvm -loop-unswitch-threshold=200000
-mllvm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
-fvirtual-function-elimination -fvisibility=hidden -fopenmp=libomp
-lomp -lamdlibm -lflang -lamdaloc-ext

Fortran benchmarks:
-m64 -W1,-mllvm -W1,-align-all-nofallthru-blocks=6
-W1,-mllvm -W1,-reduce-array-computations=3
-W1,-mllvm -W1,-inlinedefinition=4 -W1,-mllvm -W1,-lsr-in-nested-loop
-W1,-mllvm -W1,-enable-iv-split -O3 -march=znver4 -fveclib=AMDLIBM
-ffast-math -fopenmp -flto -mllvm -optimize-strided-mem-cost
-mllvm -unroll-aggressive -mllvm -unroll-threshold=150 -fopenmp=libomp
-lomp -lamdlibm -lflang -lamdaloc

Base Other Flags

C benchmarks:
-Wno-return-type -Wno-unused-command-line-argument

C++ benchmarks:
-Wno-unused-command-line-argument

Fortran benchmarks:
-Wno-unused-command-line-argument

Peak Compiler Invocation

C benchmarks:
clang

(Continued on next page)
Peak Compiler Invocation (Continued)

C++ benchmarks:
clang++

Fortran benchmarks:
flang

Peak Portability Flags

Same as Base Portability Flags

Peak Optimization Flags

C benchmarks:

600.perlbench_s: basepeak = yes
602.gcc_s: basepeak = yes
605.mcf_s: -m64 -Wl, -ml1vm -Wl, -align-all-nofallthru-blocks=6, -Wl, -ml1vm -Wl, -reduce-array-computations=3, -Wl, -allow-multiple-definition, -0fast -march=znver4
-fveclib=AMDLIBM -ffast-math -fopenmp -flto
-fstruct-layout=9 -ml1vm -unroll-threshold=50
-fremap-arrays -fstrip-mining
-ml1vm -inline-threshold=1000
-ml1vm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
-fopenmp=libomp -lomp -lamdlibm -lamdalloc -lflang
625.x264_s: basepeak = yes
657.xz_s: basepeak = yes

C++ benchmarks:

620.omnetpp_s: basepeak = yes
623.xalancbmk_s: -m64 -Wl, -ml1vm -Wl, -align-all-nofallthru-blocks=6, -Wl, -ml1vm -Wl, -reduce-array-computations=3
-Wl, -ml1vm -Wl, -do-block-reorder=aggressive -0fast
-march=znver4 -fveclib=AMDLIBM -ffast-math -fopenmp

(Continued on next page)
Hewlett Packard Enterprise
(Test Sponsor: HPE)
ProLiant DL365 Gen11
(3.25 GHz, AMD EPYC 9354)

SPEC CPU®2017 Integer Speed Result
Copyright 2017-2023 Standard Performance Evaluation Corporation

SPECspeed®2017_int_base = 14.3
SPECspeed®2017_int_peak = 14.5

<table>
<thead>
<tr>
<th>CPU2017 License: 3</th>
<th>Test Date: Jan-2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Sponsor: HPE</td>
<td>Hardware Availability: Dec-2022</td>
</tr>
<tr>
<td>Tested by: HPE</td>
<td>Software Availability: Nov-2022</td>
</tr>
</tbody>
</table>

Peak Optimization Flags (Continued)

623.xalancbmk_s (continued):
- flto -finline-aggressive -mllvm -unroll-threshold=100
- mllvm -reduce-array-computations=3 -DSPEC_OPENMP -zopt
- mllvm -do-block-reorder=aggressive
- fvirtual-function-elimination -fvisibility=hidden
- fopenmp=libomp -lomp -lamdlibm -lamdaloc-ext -lflang

631.deepsjeng_s: basepeak = yes
641.leela_s: basepeak = yes

Fortran benchmarks:
648.exchange2_s: basepeak = yes

Peak Other Flags

C benchmarks:
- Wno-return-type -Wno-unused-command-line-argument

C++ benchmarks:
- Wno-unused-command-line-argument

Fortran benchmarks:
- Wno-unused-command-line-argument

The flags files that were used to format this result can be browsed at:

You can also download the XML flags sources by saving the following links:
- http://www.spec.org/cpu2017/flags/HPE-Platform-Flags-AMD-Genoa-rev2.1.xml
- http://www.spec.org/cpu2017/flags/aocc400-flags.xml

SPEC CPU and SPECspeed are registered trademarks of the Standard Performance Evaluation Corporation. All other brand and product names appearing in this result are trademarks or registered trademarks of their respective holders.

For questions about this result, please contact the tester. For other inquiries, please contact info@spec.org.

Tested with SPEC CPU®2017 v1.1.8 on 2022-06-27 15:00:03-0400.
Report generated on 2023-02-01 18:20:47 by CPU2017 PDF formatter v6442.
Originally published on 2023-02-01.